Polymeric Artificial Muscles are Linear Faradaic Motors

Article Preview

Abstract:

Engineers, physicists and robot designers use to consider polymeric bilayer actuators (or artificial muscles) as low reliable devices for soft tools or soft robotic developments. Here we present the mechanical (movement rate and position) characterization of a polypyrrole/tape bilayer bending actuator. The polypyrrole film was synthesized in presence of dodecyl-benzene-sulphonate (DBS-) and ClO4- anions: it exchanges cations during subsequent oxidation/reduction reactions. The angular rate of the movement results a linear function of the applied current and the described angle is a linear function of the consumed charge. The correlation coefficients overcame 0.99: electro-chemo-mechanical polymeric motors are full reliable for technological applications. The electrochemical model explaining the relationships between charge, film volume variation, mechanical work, force and displacement, strain and stress is also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-144

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] David Prutchi, Design and Development of Medical Electronic Instrumentation: A Practical Perspective of the Design, Construction, and Test of Medical Devices, John Wiley & Sons; Ed. 2004, ISBN-13: 978-0471676232.

DOI: 10.1002/0471681849

Google Scholar

[2] S. J. Ebbens, J. R. Howse, Soft Matter, 6 (2010) 726.

Google Scholar

[3] T. Mirkovic, N. S. Zacharia, G. D. Scholes, G. A. Ozin, Small, 6 (2010) 159.

Google Scholar

[4] A. Agarwal, H. Hess, Progress in Polymer Science, 35 (2010) 252.

Google Scholar

[5] M. von Delius, E. M. Geertsema, D. A. Leigh, Nature Chemistry, 2 (2010) 96.

Google Scholar

[6] B. L. Feringa, Journal of Organic Chemistry, 72 (2007) 6635.

Google Scholar

[7] M. Knoblauch, W. S. Peters, Cellular and Molecular Life Sciences, 61 (2004) 2497.

Google Scholar

[8] H. Klefenz, Engineering in Life Sciences, 4 (2004) 211.

Google Scholar

[9] M. Shahinpoor, K. J. Kim, Smart Materials & Structures, 13 (2004) 1362.

Google Scholar

[10] V. K. Varadan, V. V. Varadan, Smart Materials & Structures, 9 (2000) 953.

Google Scholar

[11] P. Brochu, Q. B. Pei, Macromolecular Rapid Communications, 31 (2010) 10.

Google Scholar

[12] F. Carpi, S. Raspopovic, G. Frediani, D. De Rossi, Polymer International, 59 (2010) 422.

Google Scholar

[13] M. Shahinpoor K.J. KIM, Smart Materials & Structures, 14 (2005) 197.

Google Scholar

[14] G. G. Wallace, T. E. Campbell, P. C. Innis, Fibers and Polymers, 8 (2007) 135.

Google Scholar

[15] T. F. Otero, Journal of Materials Chemistry, 19 (2009) 681.

Google Scholar

[16] S. Hara, T. Zama, A. Ametani, W. Takashima, K. Kaneto, Journal of Materials Chemistry, 14 (2004) 2724.

Google Scholar

[17] Laura Valero Conzuelo, Joaquín Arias-Pardilla, Juan V. Cauich-Rodríguez, Mascha Afra Smit and Toribio Fernández Otero. Sensors , 10(4) 2010, 2638-2674.

DOI: 10.3390/s100402638

Google Scholar

[18] J. D. Madden, P. G. Madden, P. A. Anquetil, I. W. Hunter, Electroactive Polymers and Rapid Prototyping, 698 (2002) 137.

Google Scholar

[19] TF Otero, JG Martinez. Journal of Materials Chemistry B 1 (2013), 26-38.

Google Scholar

[20] P. Metz, G. Alici, G. M. Spinks, Sensors and Actuators A-Physical, 130 (2006) 1.

Google Scholar

[201] H. Randriamahazaka, C. Plesse, D. Teyssie, C. Chevrot, Electrochemistry Communications, 6 (2004) 299.

Google Scholar

[22] M. B. Samani, P. G. Whitten, G. M. Spinks, C. D. Cook, Electroresponsive Polymers and Their Applications, 889 (2006) 111.

Google Scholar

[23] X. Z. Wang, B. Shapiro, E. Smela, Journal of Physical Chemistry C, 113 (2009) 382.

Google Scholar

[23] TF Otero, JG Martinez, J Arias-Pardilla. Electrochimica Acta 84, (2012)112-128.

DOI: 10.1016/j.electacta.2012.03.097

Google Scholar

[24] TF Otero, JG Martinez. Chemistry of Materials 24 (2012), 4093-4099.

Google Scholar

[25] L Valero, TF Otero, JG Martínez. ChemPhysChem 15 (2014) 293–301.

Google Scholar

[26] TF Otero, JG Martínez, B Zaifoglu. Smart Materials and Structures 22 (2013), 104019.

Google Scholar

[27] T.F. Otero, J.M. Sansiñena. Bioelec. and Bienergetics, 42, 117 - 122 (1997).

Google Scholar