[1]
Wallis G, Daniel I, Pomerant Z. Field Assisted Glass-Metal Sealing, Journal of Applied Physics, 40(1969)3946-3949.
DOI: 10.1063/1.1657121
Google Scholar
[2]
Enikov T E, Boyd J G, A thermodynamic field theory for anodic bonding of micro electro-mechanical systems (MEMS). International Journal of Engineering Science. 38 (2000)135- 158.
DOI: 10.1016/s0020-7225(99)00027-0
Google Scholar
[3]
M.M.R. Howlader, M.G. Kibria, F. Zhang, M.J. Kim, Hybrid plasma bonding for void-free strong bonded interface of silicon/glass at 200℃. Talanta, 82(2010) 508-515.
DOI: 10.1016/j.talanta.2010.05.001
Google Scholar
[4]
Duck-Jung Lee, Byeong-Kwon Ju, Jin Jang, et al., Effects of a hydrophilic surface in anodic bonding. Journal of Micromechanics and microengineering, 9(1999) 313-318.
DOI: 10.1088/0960-1317/9/4/305
Google Scholar
[5]
WANG Duo-xiao, WU YU-ting, CHU Jia-ru, Research on low temperature anodic bonding technique. Journal of Transducer Technology, 24(2005) 37-39.
Google Scholar
[6]
U. Kogelschatz, Dielectric-barrier discharge: their history, discharge physics, and industrial applications, Plasma Chem. Plasma Process. Vol. 23, pp.1-46, (2003).
Google Scholar
[7]
Z. Fang, X. Xie, J. Li, H. Yang, Y. Qiu, E. Kuffel, Comparison of surface modification of polypropylene film by filamentary DBD at atmospheric pressure and homogeneous DBD at medium pressure in air. J. Phys. D: Appl. Phys., 42(2009) 085204-085212.
DOI: 10.1088/0022-3727/42/8/085204
Google Scholar
[8]
De Geyter, N., Morent, R. and Leys, C, Penetration of a dielectric barrier discharge plasma into textile structure at medium pressure. Plasma Sources Sci. Technol., 15(2006) 78-84.
DOI: 10.1088/0963-0252/15/1/012
Google Scholar
[9]
Ráhel, J., Sherman, D.M., The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure. J. Phys. D: Appl. Phys., 38(2005) 547-554.
DOI: 10.1088/0022-3727/38/4/006
Google Scholar
[10]
Lee, D., Park, J.M., Hong, et al., Numerical simulation on mode transition of atmospheric dielectric barrier discharge in helium–oxygen mixture. IEEE Trans. Plasma Sci., 33(2005) 949-957.
DOI: 10.1109/tps.2005.844493
Google Scholar
[11]
M.G. Meise, H. Langhoff, Homogeneous high-pressure gas discharge using semiconductor electrodes. Appl. Phys. B: Lasers Optics, 64(1997)41-50.
DOI: 10.1007/s003400050142
Google Scholar
[12]
B.G. Salamov, S. Ellialtioglu, B.G. Akinoglu, et al., Spatial stabilization of Townsend and glow discharges with a semiconducting cathode. J. Phys. D: Appl. Phys. 29(1996) 628-637.
DOI: 10.1088/0022-3727/29/3/022
Google Scholar
[13]
R. Brandenburg, K.V. Kozlov, A.M. Morozov, et al., Behaviour of dielectric barrier discharges in nitrogen/oxygen mixtures. in Germany, vol. 4 Proceedings of the 26th International Conference on Phenomena in Ionized Gases, Greifswald, 2003, pp.43-49.
Google Scholar
[14]
J.H. Choi, T.I. Lee, I. Han, H.K. et al., Investigation of the transition between glow and streamer discharges in atmospheric air. Plasma Sources Sci. Technol., 15(2006) 416-425.
DOI: 10.1088/0963-0252/15/3/017
Google Scholar
[15]
Changquan Wang, Guixin Zhang, Xiangning He, Effect of dielectric barrier discharge on semiconductor Si electrode surface. Applied Surface Science, 256(2010) 6047-6052.
DOI: 10.1016/j.apsusc.2010.03.117
Google Scholar