[1]
M. J. Mulvihill, S. E. Habas, I. Jen-La Plante, J. Wan, and T. Mokari, Influence of size, shape and surface coating on the stability of aqueous suspensions of CdSe nanoparticles, Chemistry of Materials, vol. 22, no. 18, p.5251–5257, (2010).
DOI: 10.1021/cm101262s
Google Scholar
[2]
E. Amstad, S. Zurcher, A. Mashaghi, J. Y. Wong, M. Textor, and E. Reimhult, Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted Magnetic resonance imaging, Small, vol. 5, no. 11, p.1334–1342, (2009).
DOI: 10.1002/smll.200801328
Google Scholar
[3]
Battez A.H., Gonzalez R., Viesca J.L., Fernandez J.E., et al., CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants, Wear 265(3-4): 422-428, (2008).
DOI: 10.1016/j.wear.2007.11.013
Google Scholar
[4]
Luan Gara, Qian Zou, Friction and wear characteristics of water-based ZnO and Al2O3 nanofluids, Tribology Transactions, 55: 3, (2012) 345-35.
DOI: 10.1080/10402004.2012.656879
Google Scholar
[5]
Yu W., Xie H., Chen L., and Li Y., Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochim. Acta 491(1-2): 92-96, (2009).
DOI: 10.1016/j.tca.2009.03.007
Google Scholar
[6]
Lee S., Choi S., Li S., and Eastman J., Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf. -Trans. ASME 121(2): 280-289, (1999).
DOI: 10.1115/1.2825978
Google Scholar
[7]
Saidur R., Leong K.Y., and Mohammad H.A., A review onapplications and challenges of nanofluids, Renew. Sust. Energ. Rev. 15 (3): 1646-1668, (2011).
Google Scholar
[8]
Colangelo G., Favale E., De Risi A., and Laforgia D., Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications, Appl. Energy 97(0): 828-833, (2012).
DOI: 10.1016/j.apenergy.2011.11.026
Google Scholar
[9]
Lee K., Hwang Y., Cheong S., Choi Y., et al., Understanding the Role of Nanoparticles in Nano-oil Lubrication, Tribol. Lett. 35(2): 127-131, (2009).
DOI: 10.1007/s11249-009-9441-7
Google Scholar
[10]
Hwang Y., Lee J., Lee J., Jeong Y., et al., Production and dispersion stability of nanoparticles in nanofluids, Powder Technol 186(2): 145-153, (2008).
DOI: 10.1016/j.powtec.2007.11.020
Google Scholar
[11]
Hernandez Battez, A., Gonzalez, R., Viesca, J. L., Fernandez, J. E., Diaz Fernandez, J. M., Machado, A., Chou, R., and Riba, J, CuO, ZrO2and ZnO Nanoparticles as Antiwear Additive in Oil Lubricants, " Wear, 265(3–4), p.422–428, (2008).
DOI: 10.1016/j.wear.2007.11.013
Google Scholar
[12]
Wu, Y. Y., Tsui, W. C., and Liu, T. C., Experimental Analysis of Tribological Properties of Lubricating Oils with Nanoparticle Additives, Wear, 262(7–8), p.819–825, (2007).
DOI: 10.1016/j.wear.2006.08.021
Google Scholar
[13]
Gara, L. and Zou, Q. (2012), Friction and Wear Characteristics of Water-Based ZnO and Al2O3Nanofluids, Tribology Transactions, 55(3), p.345–350.
DOI: 10.1080/10402004.2012.656879
Google Scholar
[14]
Yu, H. -L., Xu, Y., Shi, P. -J., Xu, B. -S., Wang, X. -L., and Liu, Q. (2008).
Google Scholar
[15]
Kao, M. -J. and Lin, C. -R. (2009), Evaluating the Role of Spherical Titanium Oxide Nanoparticles in Reducing Friction between Two Pieces of Cast Iron, Journal of Alloys and Compounds, 483(1–2), p.456–459.
DOI: 10.1016/j.jallcom.2008.07.223
Google Scholar