[1]
H. Y. Lu, X. Wang, T. T. Zhao, and B. L. Liu, Research progress on the common detection methods and LF-NMR of illegal cooked oil, J. of Food Safety and Quality, vol. 4, no. 5, pp.1428-1436, (2013).
Google Scholar
[2]
L. Vaclavik, T. Cajka, V. Hrbek, and J. Hajslova, Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment, Anal. Chim. Acta, vol. 645, pp.56-63, (2009).
DOI: 10.1016/j.aca.2009.04.043
Google Scholar
[3]
H. Y. Xu, L. Cheng, D. F. Wang, S. Q. Zeng, Y. C. Xu and Z. P. Yin, Discerning of swill-cooked dirty oil by FTIR with heating headspace, China Oils and Fats, vol. 38, no. 6, pp.64-66, (2013).
Google Scholar
[4]
R. Shi, X. Wang, B. L. Liu, T. T. Zhao, H. Y. Lu and P. Q. Yang, Determination of Oil Quality by LF-NMR: Optimization of Measurement Parameters, J. of Instru. Anal., vol. 31, no. 11, pp.1365-1372, (2012).
Google Scholar
[5]
P. Dais and E. Hatzakis, Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review, Anal. Chim. Acta, vol. 765, pp.1-27, (2013).
DOI: 10.1016/j.aca.2012.12.003
Google Scholar
[6]
D. I. Ellis, V. L. Brewster, W. B. Dunn, J. W. Allwood, A. P. Golovanov, and R. Goodacre, Fingerprinting food: current technologies for the detection of food adulteration and contamination, Chem. Soc. Rev., vol. 41, pp.5706-5727, (2012).
DOI: 10.1039/c2cs35138b
Google Scholar
[7]
S. F. Graham, S. A. Haughey, R. M. Ervin, E. Cancouet, S. Bell, and C. T. Elliott, The application of near-infrared (NIR) and Raman spectroscopy to detect adulteration of oil used in animal feed production, Food Chem., vol. 132, pp.1614-1619, (2012).
DOI: 10.1016/j.foodchem.2011.11.136
Google Scholar
[8]
C. Yeh and Y. Lin, Use of an adjustable microfluidic droplet generator to produce uniform emulsions with different concentrations, J. of Micromech. Microeng., vol. 23, no. 12, p.125025, (2013).
DOI: 10.1088/0960-1317/23/12/125025
Google Scholar
[9]
P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, Formation of monodisperse bubbles in a microfluidic flow-focusing device, Appl. Phys. Lett., vol. 85, no. 13, pp.2649-2651, (2004).
DOI: 10.1063/1.1796526
Google Scholar
[10]
L. Martin-Banderas, M. Flores-Mosquera, P. Riesco-Chueca, A. Rodriguez-Gil, A. Cebolla, S. Chavez, and A. M. Ganan-Calvo, Flow focusing: A versatile technology to produce size-controlled and specific-morphology microparticles, SMALL, vol. 1, no. 7, pp.688-692, (2005).
DOI: 10.1002/smll.200500087
Google Scholar
[11]
T. Cubaud and T. G. Mason, Capillary threads and viscous droplets in square microchannels, Phys. Fluids, vol. 20, no. 5, p.053302, (2008).
DOI: 10.1063/1.2911716
Google Scholar