The Effect of Natural Pozzolan on Sulfate Resisting Cement Exposed to Sodium Sulfate Attack for Attaining Sustainable Building Material

Article Preview

Abstract:

This paper investigates the sulfate resistance of blended cements produced by replacing 10, 20, and 30% of sulfate resisting cement (SRC) with Algerian natural pozzolan. Ordinary and blended cement mortar specimens were cast and immersed in a 5% sodium sulfate solution for 3 years. The sulfate resistance of mortars was evaluated by visual examination, compressive strength, mass change and diffraction (XRD), which was used to identify the degradation products formed by sulfate attack.The test results demonstrated that the sulfate resisting cement incorporating 10% of natural pozzolan was less susceptible to sulfate attack. In addition to improved performance, the results promise the production of a sustainable building material with environmental and economic benefits due to the reduced amount of overly-high-energy-consuming cement used and the potential reduction of the cost of sulfate resisting cement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-130

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.K. Mehta: Sulfate attack on concrete - separating myths from reality, Fifth International Conference on Durability of Concrete, Barcelona, Spain; 2000, p.1.

Google Scholar

[2] R. Tixier, B. Mobasher and M. ASCE: J. Mater. Civ. Eng. ASCE Vol. 15 (2003), p.305.

Google Scholar

[3] P.J.M. Monteiro and K. E Kurtis: Cem. Concr. Res. Vol. 33 (2003), p.987.

Google Scholar

[4] S.U. Al-Dulaijan, M. Maslehuddin, M.M. Al-Zahrani, A.M. Sharif, M. Shameem and M. Ibrahim: Cem. Concr. Comp. Vol. 25 (2003), p.429.

DOI: 10.1016/s0958-9465(02)00083-5

Google Scholar

[5] R. Chihaoui: Durabilité des matériaux cimentaires vis-à-vis d'un environnement chimiquement agressif, Magister thesis, University of sciences and technology of Oran, Algeria (2008).

Google Scholar

[6] O.S.B. Al-Amoudi, M. Maslehuddin and D.F.H. Rasheeduzzafar: Permeability of concrete-influential factors, In Proceedings of the 4th International conference on deterioration and repair of reinforced concrete, Bahrain, Vol II (1993), p.717.

Google Scholar

[7] G.I. Sezer, K. Ramyar, B. Karasu, A.B. Göktepe and A. Sezer: Mater. Des. Vol. 29 (2008), p.224.

Google Scholar

[8] S.U. Al-Dulaijan, D.E. Macphee, M. Maslehuddin, M.M. Al-Zahrani and M.R. Ali: Adv. Cem. Res. Vol 19 (2007), p.167.

Google Scholar

[9] K.K. Sideris, A.E. Savva and J. Papayianni: Cem. Concr. Compos. Vol. 28 (2006), p.47.

Google Scholar

[10] R. El-Hachem, E. Rozière, F. Grondin and A. Loukili: Cem. Concr. Res. Vol. 42 (2012), p.1327.

Google Scholar

[11] M. Ghrici, S. Kenai and M. Said-Mansour: Cem. Concr. Compos. Vol. 29 (2007), p.542.

Google Scholar

[12] P. J Tikalsky and R. L Carrasquillo: ACI Mater. J. Vol. 89 (1993), p.69.

Google Scholar

[13] O.S.B. Al-Amoudi: Mechanisms of sulfate attack in plain and blended cements- A review, Proceedings, Performance of Concrete Structures in the Arabian Gulf Environment, KFUPM, Dhahran (1998), p.172.

Google Scholar

[14] M. Ghrici, S. Kenai, M. Said-Mansour and E. H Kadri: J. Asian Architect. Build. Eng. Vol. 5 (2006), p.349.

Google Scholar

[15] M. Ghrici, S. Kenai and E. Meziane: J. Mater. Sci. Vol. 41 (2006), p.6965.

Google Scholar

[16] A. Ali-Aichouba: Effet des pouzzolanes naturelles sur les propriétés d'un ciment à base de calcaire, Mediterranean conference on materials, ENSET Oran, Algeria, 24-25 April (2005).

Google Scholar

[17] M. Hamadache, M. Mouli, F. Dif, N. Bouhamou and S. Benosman: Adv. Mater. Res. Vol. 1064 (Trans Tech Publications, Switzerland 2015), p.42.

Google Scholar

[18] H. Siad, S. Kamali-Bernard, H.E. Mesbah, G. Escadeillas, M. Mouli, and H. Khelafi: Constr. Build. Mater. Vol. 47 (2013), p.1188.

DOI: 10.1016/j.conbuildmat.2013.05.086

Google Scholar

[19] H. Siad, H.A. Mesbah, H. Khelafi, S. Kamali-Bernard and M. Mouli: Arab. J. Sci. Eng. Vol. 35 (2010), p.183.

Google Scholar

[20] Y. Senhadji, G. Escadeillas, H. Khelafi, M. Mouli and A.S. Benosman: Europ. J. Environ. Civ. Eng. Vol. 16 (2012), p.77.

Google Scholar

[21] ASTM C1012: American Society for Testing and Materials (ASTM) International, West Conshohocken, Pa (2004).

Google Scholar

[22] ASTM C305: American Society for Testing and Materials (ASTM) International, West Conshohocken, Pa (1999).

Google Scholar

[23] ASTM C1437: American Society for Testing and Materials (ASTM) International, West Conshohocken, Pa (2001).

Google Scholar

[24] ASTM C109/C109M: American Society for Testing and Materials (ASTM) International, West Conshohocken, Pa (2002).

Google Scholar

[25] T. Aye and C.T. Oguchi: Constr. Build. Mater. Vol. 25 (2011), p.2988.

Google Scholar

[26] M. Uysal and M. Sumer: Constr. Build. Mater. Vol. 25 (2011), p.4112.

Google Scholar

[27] S.T. Lee: KSCE J. Civ. Eng. Vol. 16 (2012), pp.601-609.

Google Scholar

[28] M. Sahmaran, O. Kasap, K. Duru and I.O. Yaman: Cem. Concr. Comp. Vol. 29 (2007), p.159.

Google Scholar

[29] E.F. Irassar, M. Gonzalez and V. Rahhal: Cem. Concr. Comp. Vol. 22 (2000), p.361.

Google Scholar

[30] D.F.H. Rasheeduzzafar, O.S.B. Al-Amoudi, S. Abdulfauwad and M. Maslehuddin: J. Mater. Civ. Eng. Vol. 6 (1994), p.201.

Google Scholar

[31] M.F. Montemor, A.M.P. Simoes and M.M. Salta: Cem. Concr. Comp. Vol. 22 (2000), p.175.

Google Scholar