[1]
R.S., Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports 50 (2005) 1-78.
Google Scholar
[2]
A. Węglowska, Effect of vibration welding parameters on the quality of joints made of polyamide 66, Polimery 59 (2014) 239-245.
DOI: 10.14314/polimery.2014.239
Google Scholar
[3]
A. Węglowska, A. Pietras, Influence of the welding parameters on the structure and mechanical properties of vibration welded joints of dissimilar grades of nylons, Archives of Civil and Mechanical Engineering 12 (2012) 198-204.
DOI: 10.1016/j.acme.2012.03.009
Google Scholar
[4]
A. Węglowska, Research into linear vibration welding of glass fibres reinforced nylon 66, Welding in the World, 1-14 (2014). DOI 10. 1007/s40194-014-0203-2.
DOI: 10.1007/s40194-014-0203-2
Google Scholar
[5]
M. St. Węglowski, Friction stir processing technology – new opportunities, Welding International 28 (2014) No 8 583-592.
DOI: 10.1080/09507116.2012.753216
Google Scholar
[6]
M. St., Węglowski, S. Dymek, Microstructural modification of cast aluminium alloy AlSi9Mg via Friction Modified Processing, Archives of Metallurgy and Materials 57 (2012) 71-78.
DOI: 10.2478/v10172-011-0155-0
Google Scholar
[7]
M. St. Węglowski, S. Dymek, C. Hamilton, Experimental investigation and modelling of Friction Stir Processing of cast aluminium alloy AlSi9Mg, Bulletin of The Polish Academy of Sciences-Technical Sciences 61 (2013) 893-904.
DOI: 10.2478/bpasts-2013-0096
Google Scholar
[8]
M. St. Węglowski, S. Dymek, Relationship between Friction Stir Processing parameters and torque, temperature and the penetration depth of the tool, Archives of Civil and Mechanical Engineering 13 (2013) 186-191.
DOI: 10.1016/j.acme.2013.01.003
Google Scholar
[9]
M. St. Węglowski, A. Pietras, Friction Sti Processing – analysis of the process, Archives of Metallurgy and Materials 56 (2011) 779-788.
DOI: 10.2478/v10172-011-0086-9
Google Scholar
[10]
Ch. Liu, X. Yi, Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method, Materials and Design 46 (2013) 366–371.
DOI: 10.1016/j.matdes.2012.10.030
Google Scholar
[11]
N. Kumar, R.S. Mishra, J.A. Baumann, Residual Stresses in Friction Stir Welding: A Volume in the Friction Stir Welding and Processing Book Series, Springer (2013).
DOI: 10.1016/b978-0-12-800150-9.00006-6
Google Scholar
[12]
M.A. Sutton, A.P. Reynolds, D. -Q. Wang, C. R. Hubbard, A Study of Residual Stresses and Microstructure in 2024-T3 Aluminum Friction Stir Butt Welds, Journal of Engineering Materials and Technology 124 (2002) 215-221.
DOI: 10.1115/1.1429639
Google Scholar
[13]
D.R. Ni, D.L. Chen, B.L. Xiao, D. Wang, Z.Y. Ma, Residual stresses and high cycle fatigue properties of friction stir welded SiCp/AA2009 composites. International Journal of Fatigue 55 (2013) 64–73.
DOI: 10.1016/j.ijfatigue.2013.05.010
Google Scholar
[14]
S. Sadeghi, M.A. Najafabadi, Y. Javadi, M. Mohammadisefat, Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates, Materials and Design 52 (2013).
DOI: 10.1016/j.matdes.2013.06.032
Google Scholar
[15]
L. Fratini, B. Zuccarello, An analysis of through-thickness residual stresses in aluminium FSW butt joints, International Journal of Machine Tools & Manufacture 46 (2006) 611–619.
DOI: 10.1016/j.ijmachtools.2005.07.013
Google Scholar
[16]
M. St. Weglowski, K. Kwiecinski, K. Krasnowski, et al., Characteristics of Nd: YAG laser welded joints of dual phase steel, Archives of Civil and Mechanical Engineering 9 (2009) 85-97.
DOI: 10.1016/s1644-9665(12)60072-7
Google Scholar
[17]
M. St. Weglowski, S. Stano, K. Krasnowski, et al., Characteristics of Laser Welded Joints of HDT580X Steel, Materials Science Forum 638-642 (2010) 3739-3744.
DOI: 10.4028/www.scientific.net/msf.638-642.3739
Google Scholar
[18]
L. Fratini, G. Macaluso, S. Pasta, Residual stresses and FCP prediction in FSW through a continuous FE model, Journal of Materials Processing Technology 209 (2009) 5465–5474.
DOI: 10.1016/j.jmatprotec.2009.05.001
Google Scholar
[19]
S.R. Rajesh, S.B. Han et at, Numerical determination of residual stress in friction stir weld using 3D-analytical model of stir zone, Journal of Materials Processing Technology 187–188 (2007) 224–226.
DOI: 10.1016/j.jmatprotec.2006.11.205
Google Scholar
[20]
M.T. Milan, W.W. Bose Filho, Residual Stress Evaluation of AA2024-T3 Friction Stir Welded Joints, Journal of Materials Engineering and Performance 16 (2007) 86-92.
DOI: 10.1007/s11665-006-9013-z
Google Scholar
[21]
C. Hamilton, M. St. Węglowski, S. Dymek, P. Sedek, Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si. Journal of Materials Engineering and Performance, in print.
DOI: 10.1007/s11665-015-1402-8
Google Scholar