Experimental and Numerical Analysis of Residual Stress in Cast Aluminum Alloy after FSP Process

Article Preview

Abstract:

The effect of FSP modification of cast aluminum alloy AlSi9Mg on residual stress are presented. The numerical results are compared with the residual stresses experimentally measured by the trepanation method. Experimental results show that the residual tensile stresses are higher on the advancing side than on the retreating side. The simulation successfully captures the asymmetric behavior of the residual stress profile, and the predicted maximum residual stress values show relatively good agreement with the experimental values. The simulated profile, however, is more narrow than the experimental profile, yielding a smaller region of residual tensile stresses around the process zone than experimentally observed

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

1563-1568

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S., Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports 50 (2005) 1-78.

Google Scholar

[2] A. Węglowska, Effect of vibration welding parameters on the quality of joints made of polyamide 66, Polimery 59 (2014) 239-245.

DOI: 10.14314/polimery.2014.239

Google Scholar

[3] A. Węglowska, A. Pietras, Influence of the welding parameters on the structure and mechanical properties of vibration welded joints of dissimilar grades of nylons, Archives of Civil and Mechanical Engineering 12 (2012) 198-204.

DOI: 10.1016/j.acme.2012.03.009

Google Scholar

[4] A. Węglowska, Research into linear vibration welding of glass fibres reinforced nylon 66, Welding in the World, 1-14 (2014). DOI 10. 1007/s40194-014-0203-2.

DOI: 10.1007/s40194-014-0203-2

Google Scholar

[5] M. St. Węglowski, Friction stir processing technology – new opportunities, Welding International 28 (2014) No 8 583-592.

DOI: 10.1080/09507116.2012.753216

Google Scholar

[6] M. St., Węglowski, S. Dymek, Microstructural modification of cast aluminium alloy AlSi9Mg via Friction Modified Processing, Archives of Metallurgy and Materials 57 (2012) 71-78.

DOI: 10.2478/v10172-011-0155-0

Google Scholar

[7] M. St. Węglowski, S. Dymek, C. Hamilton, Experimental investigation and modelling of Friction Stir Processing of cast aluminium alloy AlSi9Mg, Bulletin of The Polish Academy of Sciences-Technical Sciences 61 (2013) 893-904.

DOI: 10.2478/bpasts-2013-0096

Google Scholar

[8] M. St. Węglowski, S. Dymek, Relationship between Friction Stir Processing parameters and torque, temperature and the penetration depth of the tool, Archives of Civil and Mechanical Engineering 13 (2013) 186-191.

DOI: 10.1016/j.acme.2013.01.003

Google Scholar

[9] M. St. Węglowski, A. Pietras, Friction Sti Processing – analysis of the process, Archives of Metallurgy and Materials 56 (2011) 779-788.

DOI: 10.2478/v10172-011-0086-9

Google Scholar

[10] Ch. Liu, X. Yi, Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method, Materials and Design 46 (2013) 366–371.

DOI: 10.1016/j.matdes.2012.10.030

Google Scholar

[11] N. Kumar, R.S. Mishra, J.A. Baumann, Residual Stresses in Friction Stir Welding: A Volume in the Friction Stir Welding and Processing Book Series, Springer (2013).

DOI: 10.1016/b978-0-12-800150-9.00006-6

Google Scholar

[12] M.A. Sutton, A.P. Reynolds, D. -Q. Wang, C. R. Hubbard, A Study of Residual Stresses and Microstructure in 2024-T3 Aluminum Friction Stir Butt Welds, Journal of Engineering Materials and Technology 124 (2002) 215-221.

DOI: 10.1115/1.1429639

Google Scholar

[13] D.R. Ni, D.L. Chen, B.L. Xiao, D. Wang, Z.Y. Ma, Residual stresses and high cycle fatigue properties of friction stir welded SiCp/AA2009 composites. International Journal of Fatigue 55 (2013) 64–73.

DOI: 10.1016/j.ijfatigue.2013.05.010

Google Scholar

[14] S. Sadeghi, M.A. Najafabadi, Y. Javadi, M. Mohammadisefat, Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates, Materials and Design 52 (2013).

DOI: 10.1016/j.matdes.2013.06.032

Google Scholar

[15] L. Fratini, B. Zuccarello, An analysis of through-thickness residual stresses in aluminium FSW butt joints, International Journal of Machine Tools & Manufacture 46 (2006) 611–619.

DOI: 10.1016/j.ijmachtools.2005.07.013

Google Scholar

[16] M. St. Weglowski, K. Kwiecinski, K. Krasnowski, et al., Characteristics of Nd: YAG laser welded joints of dual phase steel, Archives of Civil and Mechanical Engineering 9 (2009) 85-97.

DOI: 10.1016/s1644-9665(12)60072-7

Google Scholar

[17] M. St. Weglowski, S. Stano, K. Krasnowski, et al., Characteristics of Laser Welded Joints of HDT580X Steel, Materials Science Forum 638-642 (2010) 3739-3744.

DOI: 10.4028/www.scientific.net/msf.638-642.3739

Google Scholar

[18] L. Fratini, G. Macaluso, S. Pasta, Residual stresses and FCP prediction in FSW through a continuous FE model, Journal of Materials Processing Technology 209 (2009) 5465–5474.

DOI: 10.1016/j.jmatprotec.2009.05.001

Google Scholar

[19] S.R. Rajesh, S.B. Han et at, Numerical determination of residual stress in friction stir weld using 3D-analytical model of stir zone, Journal of Materials Processing Technology 187–188 (2007) 224–226.

DOI: 10.1016/j.jmatprotec.2006.11.205

Google Scholar

[20] M.T. Milan, W.W. Bose Filho, Residual Stress Evaluation of AA2024-T3 Friction Stir Welded Joints, Journal of Materials Engineering and Performance 16 (2007) 86-92.

DOI: 10.1007/s11665-006-9013-z

Google Scholar

[21] C. Hamilton, M. St. Węglowski, S. Dymek, P. Sedek, Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si. Journal of Materials Engineering and Performance, in print.

DOI: 10.1007/s11665-015-1402-8

Google Scholar