Wall Thickness Distribution during a Combined Tube Spinning and Bending Process

Article Preview

Abstract:

During a tube bending process the wall thickness distribution plays an important role concerning the process limits. Especially the wall thinning at the extrados of the tube is crucial. The wall thickness in a combined tube bending and tube spinning process will be analyzed. Therefore, possible stages of complexity are presented to show the possibilities of such a process combination. Based on this the interactions between the bending and spinning process on the wall thickness distribution will be discussed. Finally, a diagram will show how to adjust the wall thickness at the extrados of the tube only by adapting the tube spinning process.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

1614-1619

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Tozawa, T. Ishikawa, A New Tube Bending Method - Application of Bend-Rolling Process, CIRP Annals – Manufacturing Technology 37/1, 1988, p.285–288.

DOI: 10.1016/s0007-8506(07)61637-0

Google Scholar

[2] M. Nakamura, S. Maki, M. Nakajima, K. Hayashi, Bending of Circular Pipe Using a Floating Spherical Expanding Plug, Advanced Technology of Plasticity 1996: Proceedings of the 5th International Conference on Technology of Plasticity, Columbus, Ohio, 1996, p.501.

Google Scholar

[3] M. Hermes, S. Kurze, A. E. Tekkaya, Verfahren und Vorrichtung zur Umformung eines Stangenmaterials (Method and Device for Forming a Bar Stock), European Patent, 2008, EP000002203264B1.

Google Scholar

[4] C. Becker, A. E. Tekkaya, M. Kleiner, Fundamentals of the incremental tube forming process, CIRP Annals – Manufacturing Technology 63/1, 2014, p.253–256.

DOI: 10.1016/j.cirp.2014.03.009

Google Scholar

[5] C. Becker, K. Isik, A. Bayraktar, S. Chatti, M. Hermes, C. Soyarslan, A. E. Tekkaya, Numerical Investigation of the Incremental Tube Forming Process, Key Engineering Materials 554–557, 2013, p.664–670.

DOI: 10.4028/www.scientific.net/kem.554-557.664

Google Scholar

[6] C. Becker, G. Quintana, M. Hermes, B. Cavallini, A. E. Tekkaya, Prediction of surface roughness due to spinning in the incremental tube forming process, Production Engineering-Research and Development 7 (2-3), 2013, p.153–166.

DOI: 10.1007/s11740-012-0424-4

Google Scholar

[7] C. Becker, D. Staupendahl, M. Hermes, S. Chatti, A. E. Tekkaya, Incremental Tube Forming and Torque Superposed Spatial Bending – A View on Process Parameters, Steel Research International, Special Issue, 2012, p.415–418.

Google Scholar

[8] W. -D. Franz, Maschinelles Rohrbiegen – Verfahren und Maschinen, VDI-Verlag GmbH, Düsseldorf, (1988).

Google Scholar

[9] H. Li, H. Yang, Z. Y. Zhang, G. J. Li, N. Liu, T. Welo, Multiple instability-constrained tube bending limits, Journal of Materials Processing Technology 214, 2014, p.445–455.

DOI: 10.1016/j.jmatprotec.2013.09.027

Google Scholar

[10] C. Becker, Inkrementelles Rohrumformen von hochfesten Werkstoffen, Shaker (Dortmunder Umformtechnik, 79), Aachen, (2014).

Google Scholar