[1]
F. Campbell Jr, Manufacturing Technology for Aerospace Structural Materials, (2006).
Google Scholar
[2]
R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mat Sci Eng a-Struct, 213 (1996) 103-114.
Google Scholar
[3]
J.F. Kahles, M. Field, D. Eylon and F.H. Froes, Machining of Titanium-Alloys, Jom-J Min Met Mat S, 37 (1985) 27-35.
DOI: 10.1007/bf03259441
Google Scholar
[4]
S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva and G. Salishchev, Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging, Mater. Sci. Eng., A, 536 (2012) 190-196.
DOI: 10.1016/j.msea.2011.12.102
Google Scholar
[5]
L. Wang, Y. Liu, W. Zhang, H. Wang and Q. Li, Optimization of pack parameters for hot deformation of TiAl alloys, Intermetallics, 19 (2011) 68-74.
DOI: 10.1016/j.intermet.2010.09.011
Google Scholar
[6]
N.K. Park, J.T. Yeom and Y.S. Na, Characterization of deformation stability in hot forging of conventional Ti-6Al-4V using processing maps, J. Mater. Process. Technol., 130 (2002) 540-545.
DOI: 10.1016/s0924-0136(02)00801-4
Google Scholar
[7]
R.F. Boyer and E. Collings, Materials properties handbook: titanium alloys, (1994).
Google Scholar
[8]
J.H. Kim, S.L. Semiatin, Y.H. Lee and C.S. Lee, A Self-Consistent Approach for Modeling the Flow Behavior of the Alpha and Beta Phases in Ti-6Al-4V, Metall Mater Trans A, 42A (2011) 1805-1814.
DOI: 10.1007/s11661-010-0567-x
Google Scholar
[9]
K.L. Wang, M.W. Fu, S.Q. Lu and X. Li, Study of the dynamic recrystallization of Ti-6. 5Al-3. 5Mo-1. 5Zr-0. 3Si alloy in β-forging process via Finite Element Method modeling and microstructure characterization, Mater. Des., 32 (2011) 1283-1291.
DOI: 10.1016/j.matdes.2010.09.033
Google Scholar
[10]
P.P. Bariani, T. Dal Negro and S. Bruschi, Testing and modelling of material response to deformation in bulk metal forming, CIRP Annals - Manufacturing Technology, 53 (2004) 573-595.
DOI: 10.1016/s0007-8506(07)60030-4
Google Scholar
[11]
H.J.M. Geijselaers and H. Huétink, Thermo‐Mechanical Analysis with Phase Transformations, AIP Conference Proceedings, 712 (2004) 1508-1513.
Google Scholar
[12]
S. Casotto, F. Pascon, A.M. Habraken and S. Bruschi, Thermo-mechanical-metallurgical model to predict geometrical distortions of rings during cooling phase after ring rolling operations, Int J Mach Tool Manu, 45 (2005) 657-664.
DOI: 10.1016/j.ijmachtools.2004.10.007
Google Scholar
[13]
W. Sha and S. Malinov, Titanium Alloys: Modelling of Microstructure, Properties and Applications, (2009).
Google Scholar
[14]
A. Ducato, L. Fratini, M. La Cascia and G. Mazzola, An automated visual inspection system for the classification of the phases of Ti-6Al-4V titanium alloy, 8048 LNCS (2013) 362-369.
DOI: 10.1007/978-3-642-40246-3_45
Google Scholar
[15]
G. Buffa, A. Ducato and L. Fratini, FEM based prediction of phase transformations during Friction Stir Welding of Ti6Al4V titanium alloy, Mater. Sci. Eng., A, 581 (2013) 56-65.
DOI: 10.1016/j.msea.2013.06.009
Google Scholar