First Experimental and Numerical Study on the Use of Sheet Metal Die Covers for Wear Protection in Closed-Die Forging

Article Preview

Abstract:

To reduce the failure of dies by abrasive wear, mechanical fatigue and thermal fatigue in closed-die forging usually measures like nitriding, deposition of ceramic layers by Physical Vapour Deposition (PVD), Chemical Vapour Deposition (CVD) or deposition welding are used. However, after some time wear appears and the dies have to be replaced. A new concept implements sheet metal die covers, which are placed on the die engraving during forging and will absorb abrasive wear, thermal and mechanical load. The inexpensive cover will be replaced quickly by a new one after it is worn-out. This concept is regarded in a first numerical and experimental study by comparing a covered die (C) and an uncovered die (U) for the production of the same part. A one-time use of the die cover showed a reduction of the peak temperature by 140 K and of the temperature amplitude by 37 %. The temperature reduction and the increase of inner radii of the engraving to fit the 1mm thick die cover doubled the expected die life time. The experiment showed that the soft deep drawing steel DC04 is not suitable in the current case for a die cover and a higher strength sheet metal should be applied.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

266-271

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bayramoglu, H. Polat, N. Geren, Cost and performance evaluation of different surface treated dies for hot forging process, Journal of Materials Processing Technology 205 (2008) 394–403.

DOI: 10.1016/j.jmatprotec.2007.11.256

Google Scholar

[2] E. Doege, B. -A. Behrens, Handbuch Umformtechnik: Grundlagen, Technologien, Maschinen, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, (2010).

DOI: 10.1007/978-3-642-04249-2

Google Scholar

[3] M. Tercelj, P. Panjan, I. Urankar, P. Fajfar, R. Turk, A newly designed laboratory hot forging test for evaluation of coated tool wear resistance, Surf Coat Tech 200 (2006) 3594–3604.

DOI: 10.1016/j.surfcoat.2005.02.163

Google Scholar

[4] H. Berns, W. Theisen, Eisenwerkstoffe – Stahl und Gusseisen, Springer-Verlag, Berlin Heidelberg, (2006).

Google Scholar

[5] M.L. Santaella, Oliveira, M. A. F., S.T. Button, A Study on the wear and failure of hot forging dies of automotive connecting rods, in: (2009).

Google Scholar

[6] A. Huskic, Verschleißreduzierung an Schmiedegesenken durch Mehrlagenbeschichtung und keramische Einsätze, PZH Produktionstechnisches Zentrum GmbH, Garbsen, (2005).

Google Scholar

[7] E. Doege, B. -A. Behrens, Handbuch Umformtechnik, second., Springer, Berlin, Heidelberg, (2010).

Google Scholar

[8] B.A. Behrens, F. Schäfer, Prediction of wear in hot forging tools by means of finite-element-analysis, J Mater Process Tech 167 (2005) 309–315.

DOI: 10.1016/j.jmatprotec.2005.06.057

Google Scholar

[9] J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, United Kingdom, (1990).

Google Scholar

[10] C. Romanowski, Verschleißminderung an Schmiedegesenken mittels keramischer Werkstoffe, VDI Verlag GmbH, Düsseldorf, (1998).

Google Scholar

[11] L. Barnert, Verschleißminderung bei Werkzeugen der Warmmassivumformung durch Verwendung von keramischen Gesenkeinsätzen, PZH Produktionstechnisches Zentrum GmbH, Garbsen, (2005).

Google Scholar

[12] B.A. Behrens, A. Bouguecha, G. Hirt, M. Bambach, A. Demant, Untersuchung und Erweiterung bestehender Ansätze zur verbesserten Beschreibung von Reibung und Wärmeübergang in der FEM-Simulation von Warmmassivumformprozessen: Fosta Forschungsbericht P772, (2010).

Google Scholar

[13] B.A. Behrens, A. Bouguecha, T. Hadifi, A. Klassen, Numerical and Experimental Investigations on the Service Life Estimation for Hot-Forging Dies, KEM 504-506 (2012) 163–168.

DOI: 10.4028/www.scientific.net/kem.504-506.163

Google Scholar

[14] M.L. Santaella, Thermo-mechanical fatigue of hot forging tools - prediction, analysis and optimization methods through six-sigma, Aachen.

Google Scholar