[1]
J. Banhart, Manufacture, Characterization and Applications of Cellular Metals and Metal Foams, Progress in Materials Science, 46 6 (2001) 559-632.
DOI: 10.1016/s0079-6425(00)00002-5
Google Scholar
[2]
P. Carlone, G.S. Palazzo, Characterization of TIG and FSW weldings in cast ZE41A magnesium alloy, J Mater Process Tech 215 (2015), 87-94.
DOI: 10.1016/j.jmatprotec.2014.07.026
Google Scholar
[3]
P. Carlone, G.S. Palazzo, Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallography Microstruct Anal 2 (2013), 213–222.
DOI: 10.1007/s13632-013-0078-4
Google Scholar
[4]
L.P. Lefebvre, J. Banhart, Porous Metals and Metallic Foams: Current Status and Recent Developments, Advanced Engineering Materials 9 10 (2008).
DOI: 10.1002/adem.200800241
Google Scholar
[5]
J. Banhart, Manufacturing Routes for Metallic Foams, JOM 0012 (2000) 22-27.
DOI: 10.1007/s11837-000-0062-8
Google Scholar
[6]
J. Banhart, German Patent, 100 15 (2000).
Google Scholar
[7]
J. Banhart, J. Baumeister, Deformation Characteristic of Metal Foam, J Mater Sci. 33 (1998) 1431-40.
Google Scholar
[8]
B. Matijasevic, J. Banhart, S. Fiechter, O. Görke, N. Wanderka, Modification of Titanium Hydride for improved aluminum foam manufacture, Acta Mater., 54 1887-(1900).
DOI: 10.1016/j.actamat.2005.12.012
Google Scholar
[9]
B. Matijasevic, J. Banhart, Improvement of aluminum foam technology by tailoring of blowing agent, Scr. Mater., 54 (2006) 503-8.
DOI: 10.1016/j.scriptamat.2005.10.045
Google Scholar
[10]
A. Papyrin, Cold Spray Technology, Adv. Mater. Process. 159 (2001) 49-51.
Google Scholar
[11]
J. Karthikeyan, Cold Spray Technology, Adv. Mater. Process. 163 (2005) 33-35.
Google Scholar
[12]
E. Irissou, J. G. Legoux, A. N. Ryabinin, B. Jodoin and C. Moreau, Review on Cold Spray Process and Technology: Part I—Intellectual Property, Journal of Thermal Spray Technology, Volume 17(4) December 2008, 495-516.
DOI: 10.1007/s11666-008-9203-3
Google Scholar
[13]
D. Wei, R. Dave, R. Pfeffer, Mixing and characterization of nanosized powders: an assessment of different techniques, Journal of Nanoparticle Research 4 (2002) 21–41.
Google Scholar
[14]
P. Ammendola, R. Chirone, F. Raganati, Fluidization of binary mixtures of nanoparticles under the effect of acoustic fields, Advanced Powder Technology 22(2) (2011) 174–183.
DOI: 10.1016/j.apt.2010.10.002
Google Scholar
[15]
P. Ammendola, R. Chirone, F. Raganati, Effect of mixture composition, nanoparticle density and sound intensity on mixing quality of nanopowders, Chemical Engineering and Processing: Process Intensification 50(8) (2011) 885–891.
DOI: 10.1016/j.cep.2011.05.001
Google Scholar
[16]
K.J. Hodder, J.A. Nychka, A.G. McDonald, Comparison of 10 μm and 20 nm Al-Al2O3 Metal Matrix Composite Coatings Fabricated by Low-Pressure Cold Gas Dynamic Spraying, Journal of Thermal Spray Technology 23(5) (2014) 839-848.
DOI: 10.1007/s11666-014-0094-1
Google Scholar
[17]
J. Lázaro, E. Solórzano, J. A. de Saja, M. A. Rodríguez-Pérez, Early anisotropic expansion of aluminum foam precursors, J Mater Sci 48 (2013) 5036–5046.
DOI: 10.1007/s10853-013-7291-z
Google Scholar
[18]
J. Lázaro, E. Laguna-Gutiérrez, E. Solórzano, M. A. Rodríguez-Pérez, Effect of Microstructural Anisotropy of PM Precursors on the Characteristic Expansion of Aluminum Foams, Metallurgical and Materials Transactions B volume 44B (2013) 984-991.
DOI: 10.1007/s11663-013-9852-6
Google Scholar
[19]
F. Garcia-Moreno, E. Solórzano, J. Banhart, Kinects of coalescence in liquid aluminum foams, Soft Matter 7 (2011) 9216-9223.
DOI: 10.1039/c1sm05831b
Google Scholar
[20]
J. Banhart, I. Duarte, A Study of Aluminum Foam Formation-Kinects and Microstructure, Acta Mater. 48 (2000) 2349-2362.
DOI: 10.1016/s1359-6454(00)00020-3
Google Scholar