[1]
A. Astarita, A. Squillace, L. Carrino, Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets, J Mater Eng Perform 23 (2014), 3754-3761.
DOI: 10.1007/s11665-014-1140-3
Google Scholar
[2]
A. Astarita, A. Squillace, E. Armentani, S. Ciliberto, Friction stir welding of AA 2198 T3 rolled sheets in butt configuration, Metallurgia Italiana 104 (7-8), 2012, 31-40.
Google Scholar
[3]
R.M.F. Paulo, P. Carlone, R.A.F. Valente, F. Teixeira-Dias, G.S. Palazzo, Influence of friction stir welding effects on the compressive strength of aluminium alloy thin-walled structures, Key Engineering Materials, 611-612 (2014) 1718-1723.
DOI: 10.4028/www.scientific.net/kem.611-612.1718
Google Scholar
[4]
M.B. Prime, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, Journal of Engineering Materials and Technology, 123 (2001) 162–168.
DOI: 10.1115/1.1345526
Google Scholar
[5]
P. Carlone, G.S. Palazzo, Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding, Metallogaphy Microstrucure and Analysis, 2 (2013) 213-222.
DOI: 10.1007/s13632-013-0078-4
Google Scholar
[6]
ABAQUS, Abaqus Documentation (v. 6. 14). Simulia Dassault Systémes, (2014).
Google Scholar
[7]
H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Modelling and Simulation in Materials Science and Engineering, 12 (2004) 143-157.
DOI: 10.1088/0965-0393/12/1/013
Google Scholar
[8]
R.W. McCune, A. Murphy, M. Price, J. Butterfield, The influence of friction stir welding idealization on residual stress and distorsion predictions for future airflame assembly simulations, Journal of Manufacturing Science and Enginnering, 134 (2012).
DOI: 10.1115/1.4006554
Google Scholar
[9]
O.R. Myhr, Ø. Grong, Process modelling applied to 6082-T6 aluminium weldments-I. Reaction kinetics, Acta Metallurgica Et Materialia, 39 (1991) 2693-2702.
DOI: 10.1016/0956-7151(91)90085-f
Google Scholar
[10]
R.M.F. Paulo, P. Carlone, R. Valente, F. Teixeira-Dias, G.S. Palazzo, Buckling analysis of aluminium alloy structures accounting for friction stir welding effect, Proceedings of the Ninth International Conference on Engineering Computational Technology, (2014).
DOI: 10.4203/ccp.105.38
Google Scholar
[11]
M.R. Sonne, P. Carlone, G.S. Palazzo, J.H. Hattel, Numerical modeling of AA2024-T3 friction stir welding process for residual stress evaluation, including softening effects, Key Engineering Materials, 611-612 (2014) 1675-1682.
DOI: 10.4028/www.scientific.net/kem.611-612.1675
Google Scholar
[12]
M.R. Sonne, C.C. Tutum, J.H. Hattel, A. Simar, B. de Meester, The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3, Journal of Materials Processing Technology, 213 (2013) 477-486.
DOI: 10.1016/j.jmatprotec.2012.11.001
Google Scholar
[13]
D.G. Richards, P.B. Prangnell, S.W. Williams, P.J. Withers, Global mechanical tensioning for the management of residual stresses in welds, Materials Science and Engineering A, 489 (2008) 351-362.
DOI: 10.1016/j.msea.2007.12.042
Google Scholar