[1]
Hansen, H., 1990. Cold deformation microstrucutres. Materials science and technology 6(11), 1039-1047.
Google Scholar
[2]
Hughes, D. A., Liu, Q., Chrzan, D. C. and Hansen, N., 1997. Scaling of microstructural parameters: Misorientations of deformation induced boundaries. Acta Materialia 45(1), 105-112.
DOI: 10.1016/s1359-6454(96)00153-x
Google Scholar
[3]
Hughes, D. A., Liu, Q., Chrzan, D. C. and Hansen, N., 1998. Scaling of Misorientation Angle Distributions. Physical Review Letters 81(21), 4664-4667.
DOI: 10.1103/physrevlett.81.4664
Google Scholar
[4]
Jin, N.Y. and Winter, A. T., 1984a. Dislocation structures in cyclically deformed.
Google Scholar
[1]
copper crystals. Acta Metallurgica 32, 1173-1176.
Google Scholar
[5]
Nix, W. D., Gibeling J. C. and Hughes, D. A., 1985. Time-dependent deformation of metals. Metallurgical Transactions A 16(12), 2215-2226.
DOI: 10.1007/bf02670420
Google Scholar
[6]
Ball, J. M., and James, R. D. (1987). Fine Phase Mixtures as Minimizers of Energy. Archive for Rational Mechanics and Analysis, 100(1), 13-52.
DOI: 10.1007/bf00281246
Google Scholar
[7]
Dondl, P., Dmitrieva, O., Müller, S. and Raabe, D., 2009. Lamination microstructure in sheardeformed copper single crystals, Acta Materialia 57, 3439-3449.
DOI: 10.1016/j.actamat.2009.03.035
Google Scholar
[8]
Ortiz, M. and Repetto, E., 1999. Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397-462.
DOI: 10.1016/s0022-5096(97)00096-3
Google Scholar
[9]
Kondo, K., 1952. On the geometrical and physical foundations of the theory of yielding. Proceedings Japan National Congress of Applied Mechanics, vol. 2, 41-47.
Google Scholar
[10]
Kondo, K., 1955. Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. In: Kondo, K. (Ed. ), RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Science by Means of Geometry, vol. 1. Gakuyusty Bunken Fukin-Kay, Tokyo.
Google Scholar
[11]
Nye, J. F., 1953. Some geometrical relations in dislocated solids. Acta Metall. 1, 153-162.
Google Scholar
[12]
Fokoua, L., Conti, S. and Ortiz, M., 2014. Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity. J. Mech. Phys. Solids 62, 295-311.
DOI: 10.1016/j.jmps.2013.11.002
Google Scholar
[13]
Conti, S., and Ortiz, M., 2005. Dislocation Microstructures and the Effective Behavior of Single Crystals. Archive for Rational Mechanics and Analysis, 176(1), 103-147.
DOI: 10.1007/s00205-004-0353-2
Google Scholar
[14]
Mielke, A., and Müller, S., 2006. Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM, 86(3), 233-250.
DOI: 10.1002/zamm.200510245
Google Scholar
[15]
Anguige, K. and Dondl, P., 2013. Optimal energy scaling for a shear experiment in single-crystal plasticity with cross-hardening. Zeitschrift für angewandte Mathematik und Physik, online first.
DOI: 10.1007/s00033-013-0379-0
Google Scholar
[16]
Yalcinkaya, T., Brekelmans, W.A.M., Geers, M.G.D., 2011. Deformation patterning driven by rate dependent non-convex strain gradient plasticity. J. Mech. Phys. Solids. 59, 1-17.
DOI: 10.1016/j.jmps.2010.10.002
Google Scholar
[17]
Yalcinkaya, T., Brekelmans, W.A.M., Geers, M.G.D., 2012. Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. International Journal of Solids and Structures 49, 2625-2636.
DOI: 10.1016/j.ijsolstr.2012.05.029
Google Scholar
[18]
Klusemann, B., Yalcinkaya, T., 2013. Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex helmholtz energy. International Journal of Plasticity 48, 168-188.
DOI: 10.1016/j.ijplas.2013.02.012
Google Scholar
[19]
Klusemann, B., Yalcinkaya, T., Geers, M.G.D., Svendsen, B., 2013. Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Computational Materials Science 80, 51-60.
DOI: 10.1016/j.commatsci.2013.04.016
Google Scholar
[20]
Anguige, K. and Dondl, P., 2014. Relaxation of the single-slip condition in strain-gradient plasticity. accepted for publication in Proc R Soc A.
DOI: 10.1098/rspa.2014.0098
Google Scholar
[21]
Devincre, B., Hoc, T., and Kubin, L. P., 2005. Collinear interactions of dislocations and slip systems. Materials Science and Engineering: A, 400-401, 182-185.
DOI: 10.1016/j.msea.2005.02.071
Google Scholar
[22]
Devincre, B., Kubin, L., and Hoc, T., 2007. Collinear superjogs and the low-stress response of fcc crystals. Scripta Materialia, 57(10), 905-908.
DOI: 10.1016/j.scriptamat.2007.07.026
Google Scholar
[23]
Hildebrand, F. and Miehe, C., 2012. Variational phase field modeling of laminate deformation microstructure in finite gradient crystal plasticity. Proc. Appl. Math. Mech. 12, 37-40.
DOI: 10.1002/pamm.201210011
Google Scholar
[24]
Anguige, K. and Dondl, P., forthcoming.
Google Scholar