Relaxation of the Non-Convex, Incremental Energy-Minimization Problem in Single-Slip Strain-Gradient Plasticity

Article Preview

Abstract:

We consider a variational formulation of gradient elasto-plasticity, as they arise in the incremental formulation of the plastic evolution problem, subject to a class of single-slip side conditions. Such side conditions typically render the associated boundary-value problems non-convex. We first show that, for a large class of plastic deformations, a given single-slip condition (specification of Burgers' vectors and slip planes) can be relaxed by introducing a lamination microstructure. This yields a relaxed side condition which allows for arbitrary slip in a prescribed family of slip planes. This relaxed model can be thought of as an aid to simulating macroscopic plastic behavior without the need to resolve arbitrarily fine spatial scales. We also discuss issues of existence of solutions for the relaxed model.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

963-968

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hansen, H., 1990. Cold deformation microstrucutres. Materials science and technology 6(11), 1039-1047.

Google Scholar

[2] Hughes, D. A., Liu, Q., Chrzan, D. C. and Hansen, N., 1997. Scaling of microstructural parameters: Misorientations of deformation induced boundaries. Acta Materialia 45(1), 105-112.

DOI: 10.1016/s1359-6454(96)00153-x

Google Scholar

[3] Hughes, D. A., Liu, Q., Chrzan, D. C. and Hansen, N., 1998. Scaling of Misorientation Angle Distributions. Physical Review Letters 81(21), 4664-4667.

DOI: 10.1103/physrevlett.81.4664

Google Scholar

[4] Jin, N.Y. and Winter, A. T., 1984a. Dislocation structures in cyclically deformed.

Google Scholar

[1] copper crystals. Acta Metallurgica 32, 1173-1176.

Google Scholar

[5] Nix, W. D., Gibeling J. C. and Hughes, D. A., 1985. Time-dependent deformation of metals. Metallurgical Transactions A 16(12), 2215-2226.

DOI: 10.1007/bf02670420

Google Scholar

[6] Ball, J. M., and James, R. D. (1987). Fine Phase Mixtures as Minimizers of Energy. Archive for Rational Mechanics and Analysis, 100(1), 13-52.

DOI: 10.1007/bf00281246

Google Scholar

[7] Dondl, P., Dmitrieva, O., Müller, S. and Raabe, D., 2009. Lamination microstructure in sheardeformed copper single crystals, Acta Materialia 57, 3439-3449.

DOI: 10.1016/j.actamat.2009.03.035

Google Scholar

[8] Ortiz, M. and Repetto, E., 1999. Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397-462.

DOI: 10.1016/s0022-5096(97)00096-3

Google Scholar

[9] Kondo, K., 1952. On the geometrical and physical foundations of the theory of yielding. Proceedings Japan National Congress of Applied Mechanics, vol. 2, 41-47.

Google Scholar

[10] Kondo, K., 1955. Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. In: Kondo, K. (Ed. ), RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Science by Means of Geometry, vol. 1. Gakuyusty Bunken Fukin-Kay, Tokyo.

Google Scholar

[11] Nye, J. F., 1953. Some geometrical relations in dislocated solids. Acta Metall. 1, 153-162.

Google Scholar

[12] Fokoua, L., Conti, S. and Ortiz, M., 2014. Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity. J. Mech. Phys. Solids 62, 295-311.

DOI: 10.1016/j.jmps.2013.11.002

Google Scholar

[13] Conti, S., and Ortiz, M., 2005. Dislocation Microstructures and the Effective Behavior of Single Crystals. Archive for Rational Mechanics and Analysis, 176(1), 103-147.

DOI: 10.1007/s00205-004-0353-2

Google Scholar

[14] Mielke, A., and Müller, S., 2006. Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM, 86(3), 233-250.

DOI: 10.1002/zamm.200510245

Google Scholar

[15] Anguige, K. and Dondl, P., 2013. Optimal energy scaling for a shear experiment in single-crystal plasticity with cross-hardening. Zeitschrift für angewandte Mathematik und Physik, online first.

DOI: 10.1007/s00033-013-0379-0

Google Scholar

[16] Yalcinkaya, T., Brekelmans, W.A.M., Geers, M.G.D., 2011. Deformation patterning driven by rate dependent non-convex strain gradient plasticity. J. Mech. Phys. Solids. 59, 1-17.

DOI: 10.1016/j.jmps.2010.10.002

Google Scholar

[17] Yalcinkaya, T., Brekelmans, W.A.M., Geers, M.G.D., 2012. Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. International Journal of Solids and Structures 49, 2625-2636.

DOI: 10.1016/j.ijsolstr.2012.05.029

Google Scholar

[18] Klusemann, B., Yalcinkaya, T., 2013. Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex helmholtz energy. International Journal of Plasticity 48, 168-188.

DOI: 10.1016/j.ijplas.2013.02.012

Google Scholar

[19] Klusemann, B., Yalcinkaya, T., Geers, M.G.D., Svendsen, B., 2013. Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Computational Materials Science 80, 51-60.

DOI: 10.1016/j.commatsci.2013.04.016

Google Scholar

[20] Anguige, K. and Dondl, P., 2014. Relaxation of the single-slip condition in strain-gradient plasticity. accepted for publication in Proc R Soc A.

DOI: 10.1098/rspa.2014.0098

Google Scholar

[21] Devincre, B., Hoc, T., and Kubin, L. P., 2005. Collinear interactions of dislocations and slip systems. Materials Science and Engineering: A, 400-401, 182-185.

DOI: 10.1016/j.msea.2005.02.071

Google Scholar

[22] Devincre, B., Kubin, L., and Hoc, T., 2007. Collinear superjogs and the low-stress response of fcc crystals. Scripta Materialia, 57(10), 905-908.

DOI: 10.1016/j.scriptamat.2007.07.026

Google Scholar

[23] Hildebrand, F. and Miehe, C., 2012. Variational phase field modeling of laminate deformation microstructure in finite gradient crystal plasticity. Proc. Appl. Math. Mech. 12, 37-40.

DOI: 10.1002/pamm.201210011

Google Scholar

[24] Anguige, K. and Dondl, P., forthcoming.

Google Scholar