Influences of MOS Device Characteristic under Different Oxygen-Dose Participations in the Silicon Substrate

Article Preview

Abstract:

A silicon substrate is the starting point of producing the semiconductor component, so that the quality of semiconductor substrate is very important during the VLSI fabrication. In this paper, we will evaluate the influence of MOS device characteristics under different oxygen impurities in silicon substrates. In the course of silicon substrate pulling process by Czochralski method, the defect and impurity will be existed; the oxygen atom will be induced substrate dislocations and affected the substrate quality. In this work, different oxygen doses will be used in wafer to study the impacts on MOS CV curve characteristic, interface trap charge characteristic, ID-VDS curve, ID-VGS curve, and threshold voltage behaviors of MOS devices.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 656-657)

Pages:

8-13

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.C. Dash, Growth of Silicon Crystals Free from Dislocations, Journal of Applied Physics. 30 (1959) 459-474.

DOI: 10.1063/1.1702390

Google Scholar

[2] M.L. Polignano, G.F. Cerofolini, H. Bender, C. Claeys, J. Reffle, Lifetime Engineering by Oxygen Precipitation in Silicon, 17th European Solid State Device Research Conference. (1987) 335-338.

Google Scholar

[3] S.M. Hu, Effects of ambients on oxygen precipitation in silicon, Applied Physics Letters. 36 (1980) 561-564.

DOI: 10.1063/1.91546

Google Scholar

[4] R.A. Craven, Oxygen Precipitation in Silicon, IEEE International Electron Devices Meeting. (1981) 228-231.

Google Scholar

[5] S. Isomae, Computer‐aided simulation for oxygen precipitationin silicon, Journal of Applied Physics. 70 (1991) 4217-4223.

DOI: 10.1063/1.349147

Google Scholar

[6] A. Borghesi, B. Pivac, A. Sassella, A. Stella, Oxygen precipitation in silicon, Journal of Applied Physics. 77 (1995) 4169-4244.

DOI: 10.1063/1.359479

Google Scholar

[7] s. Senkader, J. Esfandyari, G. Hobler, A model for oxygen precipitation in silicon including bulk stacking fault growth, Journal of Applied Physics. 78 (1995) 6469-6476.

DOI: 10.1063/1.360532

Google Scholar

[8] H. -D. Chion and J. Schumate, Effect of Oxygen Content, Backside Damage and Polyslilcon Backsealed Substrate on Switching Transistors and Diodes, IEEE International Conference on Semiconductor Electronics. (1996) 105-108.

DOI: 10.1109/smelec.1996.616463

Google Scholar

[9] Q. Wang, M. Daggubati, R. Yu, X.F. Zhang, High temperature nitrogen annealing induced interstitial oxygen precipitation in silicon epitaxial layer on heavily arsenic-doped silicon wafer, Applied Physics Letters, 88 (2006) 242112 - 242112-3.

DOI: 10.1063/1.2213516

Google Scholar

[10] C. Gao, X. Ma, J. Zhao, D. Yang, Effect of tin on point defects and oxygen precipitation in Czochralski silicon: Experimental and theoretical studies, Journal of Applied Physics, 113 (2013), 093511 - 093511-8.

DOI: 10.1063/1.4794531

Google Scholar

[11] X. Zhang, C. Ghao, M. Fu, X. Ma, J. Vanhellemont, D. Yang, Impact of rapid thermal processing on oxygenprecipitation in heavily arsenic and antimony doped Czochralski silicon, Journal of Applied Physics, 113 (2013), 163510 - 163510-7.

DOI: 10.1063/1.4803061

Google Scholar

[12] B. Birouk, M. Bouzerdoum, D. Madi, MOS structures quality under annealing influence, International Conference on Applied Electronics. (2013) 1-4.

Google Scholar

[13] E. Rosencher, D. Bois, Comparison of interface state density in MIS structure deduced from DLTS and Terman measurements, Electronics Letters. 18 (1982) 545 - 546.

DOI: 10.1049/el:19820369

Google Scholar