Effect of Added Cr3C2 on the Microstructure and Mechanical Properties of WC–SiC Ceramics

Article Preview

Abstract:

WC–20 mol% SiC ceramics with added Cr3C2 were sintered at 1600°C with a resistance-heated hot-pressing machine. Dense WC–SiC ceramics containing 0.1–0.9 mol% Cr3C2 were obtained. Above 1.2 mol% Cr3C2, the relative density decreased with increasing Cr3C2 content. A small amount of a Nowotny-phase type (Mo5Si3C-type) product was formed by the addition of Cr3C2, and no Cr3C2-based solid solution was found. The WC–20 mol% SiC–Cr3C2 ceramics had very fine equiaxed granular WC grains because of inhibited grain growth of WC. The Young’s modulus of the WC–20 mol% SiC–Cr3C2 ceramics decreased with increasing Cr3C2 content because Cr3C2 has a much lower Young’s modulus than WC. Cr3C2 addition below 0.9 mol% increased the Vickers hardness from 20.9 to 23.0 GPa, but a larger added amount reduced the Vickers hardness. The hardness of the WC–20 mol% SiC–Cr3C2 ceramics and the WC grain size obeyed a Hall–Petch-like relationship, suggesting that the hardness was strongly controlled by the WC grain size. A higher fracture toughness, 6.4 MPa m1/2, was obtained for the ceramics containing a small amount of Cr3C2 than for the binder-free WC. The addition of 0.1–0.3 mol% Cr3C2 improved the fracture toughness without reducing the hardness.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 656-657)

Pages:

33-38

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. D. Gulden, Mechanical properties of polycrystalline β-SiC, J. Am. Ceram. Soc. 52 (1969) 585-590.

Google Scholar

[2] Alexandra Kovalcíková, Ján Dusza, Pavol Šajglík, Thermal shock resistance and fracture toughness of liquid-phase-sintered SiC-based ceramics, J. Eur. Cera. Soc. 29 (2009) 2387-2394.

DOI: 10.1016/j.jeurceramsoc.2009.01.021

Google Scholar

[3] M. Balog, P. Šajgalík, M. Hnatko, Z. Lencéš, F. Monteverde, J. Keckéš, J. -L. Huang, Nano- versus macro-hardness of liquid phase sintered SiC, J. Eur. Cera. Soc. 25 (2005) 529-534.

DOI: 10.1016/j.jeurceramsoc.2004.01.026

Google Scholar

[4] S. Sugiyama, D. Kudo, H. Taimatsu, Preparation of WC-SiC whisker composites by hot pressing and their mechanical properties, Mater. Trans. 49 (2008) 1644-1649.

DOI: 10.2320/matertrans.mra2008019

Google Scholar

[5] A. Nino, Y. Nakaibayashi, S. Sugiyama, H. Taimatsu, Microstructure and mechanical properties of WC-SiC composites, Mater. Trans. 52 (2011) 1641-1645.

DOI: 10.2320/matertrans.m2011045

Google Scholar

[6] A. Nino, K. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide, Mater. Trans. 53 (2012) 1475-1480.

DOI: 10.2320/matertrans.m2012148

Google Scholar

[7] R. W. Rice, C. Cm. Wu, F. Borchelt, Hardness-grain-size relation in ceramics, J. Am. Ceram. Soc. 77 (1994) 2539-2553.

Google Scholar

[8] H. C. Lee, J. Gurland, Hardness and deformation of cemented tungsten carbide, Mater. Sci. Eng. 33 (1978) 125-133.

DOI: 10.1016/0025-5416(78)90163-5

Google Scholar

[9] K. Hayashi, Y. Fukue, H. Suzuki, Effects of addition carbides on the grain size of WC-Co alloy, J. Jpn. Soc. Powder Powder Metall. 19 (1972) 67-71.

DOI: 10.2497/jjspm.19.67

Google Scholar

[10] S. Imasato, K. Tokumoto, T. Kitada, S. Sakaguchi, Int. J. Refract. Mat. Hard Mater. 13 (1995) 305-312.

Google Scholar

[11] H. Taimatsu, S. Sugiyama, M. Komatsu, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC-SiC whisker ceramics, Mater. Trans. 50 (2009) 2435-2440.

DOI: 10.2320/matertrans.m2009169

Google Scholar

[12] C. B. Ponton, R. D. Rawlings, Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standardised indentation toughness equations, Mater. Sci. Technol. 5 (1989) 865-872.

DOI: 10.1179/mst.1989.5.9.865

Google Scholar

[13] C. Liu, A. Nino, S. Sugiyama, H. Taimatsu, Preparation of (W, Mo)C-SiC ceramics and their mechanical properties, J. Jpn. Soc. Powder Powder Metall. 59 (2012) 484-488.

DOI: 10.2497/jjspm.59.484

Google Scholar

[14] M. Brieseck, M. Bohn, W. Lengauer, Diffusion and solubility of Cr in WC, J. All. Compd. 489 (2010) 408-414.

DOI: 10.1016/j.jallcom.2009.09.137

Google Scholar

[15] A. Nino, N. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbide grain growth inhibitors on the microstructures and mechanical properties of WC-SiC-Mo2C hard ceramics, Int. J. Refract. Met. Hard Mater. 43 (2014) 150-156.

DOI: 10.1016/j.ijrmhm.2013.11.016

Google Scholar

[16] J. Poetschke, V. Richter, T. Gestrich, A. Michaelis, Grain growth during sintering of tungsten carbide ceramics, Int. J. Refract. Met. Hard Mater. 43 (2014) 309-316.

DOI: 10.1016/j.ijrmhm.2014.01.001

Google Scholar

[17] W. J. Lackey, D. P. Stinton, G. A. Cerney, L. L. Fehrenbacher, A. C. Schaffhauser, Ceramic coatings for heat engine materials-status and future needs, ORNL / TM 8959, (1983).

Google Scholar

[18] T. D. Gulden, Mechanical properties of polycrystalline β-SiC, J. Am. Ceram. Soc. 52 (1969) 585-590.

Google Scholar