Effect of Sintering Condition on the Microstructure and Electrical Properties of Lead-Free (Na0.5K0.5)NbO3 - Bi0.5(Na0.95K0.05)0.5TiO3 Ceramics

Article Preview

Abstract:

(Na0.5K0.5)NbO3 with 0~5 mole% Bi0.5(Na0.95K0.05)0.5TiO3 has been prepared following the conventional mixed oxide process. It can be concluded that the NKN-BNKT ceramics have orthorhombic structures in the case x≤ 0.02. With increasing BNKT content (x=0.03 to 0.05), however, the structure changes from orthorhombic to rhombohedral phase. Above results demonstrated that the MPB between orthorhombic and rhombohedral phases exits in the solid solution with the BNKT content of x=0.02. For 0.98(Na0.5K0.5)NbO3-0.02Bi (Na0.95K0.05)TiO3 ceramics, the electromechanical coupling coefficients of the planar mode kp and the piezoelectric constant d33 reach 0.28 and 155 p/CN, respectively, at the sintering of 1100 °C for 3 h. Dielectric and piezoelectric properties have maximum values at the sintering temperature of 1100 °C for 5 h. For 0.98(Na0.5K0.5)NbO3-0.02Bi0.5(Na0.95K0.05)0.5TiO3 ceramics, the electromechanical coupling coefficients of the planar mode kp and the piezoelectric constant d33 reach 0.30 and 170, respectively, at the sintering of 1100 °C for 5 h. The effect of prolonging the sintering time to the 0.98(Na0.5K0.5)NbO3-0.02Bi0.5(Na0.95K0.05)0.5TiO3 system is a helpful method on ceramic processing to improve densification and properties..

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 656-657)

Pages:

45-50

Citation:

Online since:

July 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Y. Chu, W. Water, Y.D. Juang, J. T. Liaw, and S. B. Da, Piezoelectric and Dielectric Characteristics of Lithium Potassium Niobate Ceramic System, Ferroelectrics 297 (2003) 11-17.

DOI: 10.1080/713642469

Google Scholar

[2] M. Matsubara, T. Yamaguchi, and S. Hirano, Effect of Li Substitution on the Piezoelectric Properties of Potassium Sodium Niobate Ceramics , Jpn. J. Appl. Phys. 44 (2005) 6136-6142.

DOI: 10.1143/jjap.44.6136

Google Scholar

[3] M. D. Maeder, D. Damjanovic and N. Setter, Lead Free Piezoelectric Materials, J. Electroceram. . 13 (2004) 385-392.

DOI: 10.1007/s10832-004-5130-y

Google Scholar

[4] Y. Guo, K. Kakimoto, and H. Ohsato, Structure and Electrical Properties of Lead-Free (Na0. 5K0. 5)NbO3-BaTiO3 Ceramics, Jpn. J. Appl. Phys. 43 (2004) 6662-6664.

DOI: 10.1143/jjap.43.6662

Google Scholar

[5] C. H. Wang, Physical and Electric Properties of Lead-Free (Na0. 5K0. 5)NbO3- Ba(Zr0. 04Ti0. 96)O3 Ceramics, J. Ceram. Soc. Jpn. 117 (2009) 680-684.

Google Scholar

[6] Y. Guo, K. Kakimoto, and H. Ohsato, Phase transitionbehavior and piezoelectricproperties of (Na0. 5K0. 5)NbO3-LiNbO3 ceramics, Appl. Phys. Lett. 85 (2004) 4121-4124.

DOI: 10.1063/1.1813636

Google Scholar

[7] Y. Guo, K. Kakimoto, H. Ohsato, (Na0. 5K0. 5)NbO3-LiTaO3 lead-free piezoelectric ceramics, Mater. Lett. 59 (2004) 241-244.

DOI: 10.1016/j.matlet.2004.07.057

Google Scholar

[8] Y. Guo, K. Kakimoto, and H. Ohsato, Dielectric and piezoelectric properties of lead-free (Na0. 5K0. 5)NbO3–SrTiO3 ceramics , Solid State Commun., 129 (2004) 279-284.

DOI: 10.1016/j.ssc.2003.10.026

Google Scholar

[9] R. C. Chang, S. Y. Chu, Y. F. Lin and Y. P. Wong, An investigation of (Na0. 5K0. 5)NbO3–CaTiO3 based lead-free ceramics and surface acoustic wave devices, J. Eur. Cerm. Soc. 27 (2007) 4453-4460.

DOI: 10.1016/j.jeurceramsoc.2007.02.218

Google Scholar

[10] C. H. Wang, Physical and Eelectric Properties of Lead-Free (Bi0. 5Na0. 5)TiO3 -Ba(Zr0. 04Ti0. 96)O3 Ceramics near the Morphotropic Phase Boundary, J. Ceram. Soc. Jpn. 116, (2008) 632-636.

DOI: 10.2109/jcersj2.116.632

Google Scholar

[11] Z. Chen, J. Hu, and X. He, Piezoelectric and dielectric properties of (Na0. 5K0. 5)NbO3 -Bi0. 5(Na0. 8K0. 2)0. 5TiO3 lead-free ceramics, J. Ceram. Soc. Jpn. 116 (2008) 661-663.

DOI: 10.2109/jcersj2.116.661

Google Scholar

[12] Anon., IRE Standards on Piezoelectric Crystals: Measurement of Piezoelectric Ceramics, Proc. IRE. 49 (1961) 1161-1168.

DOI: 10.1109/jrproc.1961.287860

Google Scholar

[13] R.L. Coble, Grain growth in sintered ZnO and ZnO–Bi2O3 ceramics, J. Appl. Phys. 56 (1985) 131-141.

Google Scholar