[1]
A.L. Andrady, Applications of Nanofiber Mats, Science and Technology of Polymer Nanofibers, John Wiley & Sons, Inc. 2007, pp.225-247.
Google Scholar
[2]
S. Zarkoob, R.K. Eby, D.H. Reneker, S.D. Hudson, D. Ertley, W.W. Adams, Structure and morphology of electrospun silk nanofibers, Polymer, 45 (2004) 3973-3977.
DOI: 10.1016/j.polymer.2003.10.102
Google Scholar
[3]
G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials, Biomaterials, 24 (2003) 401-416.
DOI: 10.1016/s0142-9612(02)00353-8
Google Scholar
[4]
C. Vepari, D.L. Kaplan, Silk as a Biomaterial, Prog Polym Sci, 32 (2007) 991-1007.
Google Scholar
[5]
J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules, 3 (2002) 232-238.
DOI: 10.1021/bm015533u
Google Scholar
[6]
Z. -M. Huang, Y.Z. Zhang, S. Ramakrishna, C.T. Lim, Electrospinning and mechanical characterization of gelatin nanofibers, Polymer, 45 (2004) 5361-5368.
DOI: 10.1016/j.polymer.2004.04.005
Google Scholar
[7]
C.S. Ki, D.H. Baek, K.D. Gang, K.H. Lee, I.C. Um, Y.H. Park, Characterization of gelatin nanofiber prepared from gelatin–formic acid solution, Polymer, 46 (2005) 5094-5102.
DOI: 10.1016/j.polymer.2005.04.040
Google Scholar
[8]
K. Ohkawa, D. Cha, H. Kim, A. Nishida, H. Yamamoto, Electrospinning of Chitosan, Macromolecular Rapid Communications, 25 (2004) 1600-1605.
DOI: 10.1002/marc.200400253
Google Scholar
[9]
M.Z. Elsabee, H.F. Naguib, R.E. Morsi, Chitosan based nanofibers, review, Materials Science and Engineering: C, 32 (2012) 1711-1726.
DOI: 10.1016/j.msec.2012.05.009
Google Scholar
[10]
S.A. Theron, E. Zussman, A.L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Polymer, 45 (2004) 2017-(2030).
DOI: 10.1016/j.polymer.2004.01.024
Google Scholar
[11]
B. Gupta, N. Revagade, J. Hilborn, Poly(lactic acid) fiber: An overview, Progress in Polymer Science, 32 (2007) 455-482.
DOI: 10.1016/j.progpolymsci.2007.01.005
Google Scholar
[12]
X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna, Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials, 25 (2004) 1883-1890.
DOI: 10.1016/j.biomaterials.2003.08.042
Google Scholar
[13]
K.H. Kim, L. Jeong, H.N. Park, S.Y. Shin, W.H. Park, S.C. Lee, T.I. Kim, Y.J. Park, Y.J. Seol, Y.M. Lee, Y. Ku, I.C. Rhyu, S.B. Han, C.P. Chung, Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration, Journal of biotechnology, 120 (2005).
DOI: 10.1016/j.jbiotec.2005.06.033
Google Scholar
[14]
X. Liu, P.X. Ma, Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds, Biomaterials, 30 (2009) 4094-4103.
DOI: 10.1016/j.biomaterials.2009.04.024
Google Scholar
[15]
R. Jayakumar, M. Prabaharan, P.T. Sudheesh Kumar, S.V. Nair, H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnology advances, 29 (2011) 322-337.
DOI: 10.1016/j.biotechadv.2011.01.005
Google Scholar
[16]
K. Yoon, H.N. Lee, C.S. Ki, D. Fang, B.S. Hsiao, B. Chu, I.C. Um, Effects of degumming conditions on electro-spinning rate of regenerated silk, International journal of biological macromolecules, 61 (2013) 50-57.
DOI: 10.1016/j.ijbiomac.2013.06.039
Google Scholar
[17]
J.S. Ko, K. Yoon, C.S. Ki, H.J. Kim, D.G. Bae, K.H. Lee, Y.H. Park, I.C. Um, Effect of degumming condition on the solution properties and electrospinnablity of regenerated silk solution, International journal of biological macromolecules, 55 (2013).
DOI: 10.1016/j.ijbiomac.2012.12.041
Google Scholar
[18]
M. -H. Ho, C. -C. Hsieh, S. -W. Hsiao, D. Van Hong Thien, Fabrication of asymmetric chitosan GTR membranes for the treatment of periodontal disease, Carbohydrate Polymers, 79 (2010) 955-963.
DOI: 10.1016/j.carbpol.2009.10.031
Google Scholar
[19]
F. Croisier, C. Jérôme, Chitosan-based biomaterials for tissue engineering, European Polymer Journal, 49 (2013) 780-792.
DOI: 10.1016/j.eurpolymj.2012.12.009
Google Scholar
[20]
C. Meechaisue, P. Wutticharoenmongkol, R. Waraput, T. Huangjing, N. Ketbumrung, P. Pavasant, P. Supaphol, Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study, Biomedical materials (Bristol, England), 2 (2007).
DOI: 10.1088/1748-6041/2/3/003
Google Scholar
[21]
N. Amiraliyan, M. Nouri, M. Haghighat Kish, Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats, Polym. Sci. Ser. A, 52 (2010) 407-412.
DOI: 10.1134/s0965545x10040097
Google Scholar
[22]
B. -M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro, Biomaterials, 25 (2004) 1289-1297.
DOI: 10.1016/j.biomaterials.2003.08.045
Google Scholar
[23]
K.E. Park, S.Y. Jung, S.J. Lee, B. -M. Min, W.H. Park, Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers, International journal of biological macromolecules, 38 (2006) 165-173.
DOI: 10.1016/j.ijbiomac.2006.03.003
Google Scholar
[24]
Y.Z. Zhang, J. Venugopal, Z.M. Huang, C.T. Lim, S. Ramakrishna, Crosslinking of the electrospun gelatin nanofibers, Polymer, 47 (2006) 2911-2917.
DOI: 10.1016/j.polymer.2006.02.046
Google Scholar
[25]
M.O. Choi, Y. -J. Kim, Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization, International journal of biological macromolecules, 50 (2012) 1188-1194.
DOI: 10.1016/j.ijbiomac.2012.04.001
Google Scholar
[26]
J. Xu, J. Yan, Q. Gu, J. Li, H. Wang, Preparation of fluoride-containing gelatin nanofiber scaffold, Materials Letters, 65 (2011) 2404-2406.
DOI: 10.1016/j.matlet.2011.04.080
Google Scholar
[27]
L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M. -H. Nasr-Esfahani, S. Ramakrishna, Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials, 29 (2008) 4532-4539.
DOI: 10.1016/j.biomaterials.2008.08.007
Google Scholar
[28]
D.M. Correia, J. Padrão, L.R. Rodrigues, F. Dourado, S. Lanceros-Méndez, V. Sencadas, Thermal and hydrolytic degradation of electrospun fish gelatin membranes, Polymer Testing, 32 (2013) 995-1000.
DOI: 10.1016/j.polymertesting.2013.05.004
Google Scholar
[29]
S. Wang, G. Zhao, Quantitative characterization of the electrospun gelatin–chitosan nanofibers by coupling scanning electron microscopy and atomic force microscopy, Materials Letters, 79 (2012) 14-17.
DOI: 10.1016/j.matlet.2012.03.044
Google Scholar
[30]
K.T. Shalumon, K.H. Anulekha, K.P. Chennazhi, H. Tamura, S.V. Nair, R. Jayakumar, Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering, International journal of biological macromolecules, 48 (2011).
DOI: 10.1016/j.ijbiomac.2011.01.020
Google Scholar
[31]
H. Homayoni, S.A.H. Ravandi, M. Valizadeh, Electrospinning of chitosan nanofibers: Processing optimization, Carbohydrate Polymers, 77 (2009) 656-661.
DOI: 10.1016/j.carbpol.2009.02.008
Google Scholar
[32]
V. Sencadas, D.M. Correia, C. Ribeiro, S. Moreira, G. Botelho, J.L. Gómez Ribelles, S. Lanceros-Mendez, Physical-chemical properties of cross-linked chitosan electrospun fiber mats, Polymer Testing, 31 (2012) 1062-1069.
DOI: 10.1016/j.polymertesting.2012.07.010
Google Scholar
[33]
C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science, 34 (2009) 641-678.
DOI: 10.1016/j.progpolymsci.2009.04.001
Google Scholar
[34]
H. Nagahama, H. Maeda, T. Kashiki, R. Jayakumar, T. Furuike, H. Tamura, Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel, Carbohydrate Polymers, 76 (2009) 255-260.
DOI: 10.1016/j.carbpol.2008.10.015
Google Scholar
[35]
M. Okhawilai, R. Rangkupan, S. Kanokpanont, S. Damrongsakkul, Preparation of Thai silk fibroin/gelatin electrospun fiber mats for controlled release applications, International journal of biological macromolecules, 46 (2010) 544-550.
DOI: 10.1016/j.ijbiomac.2010.02.008
Google Scholar