[1]
A. Yusof, N. Nizam, N. Rashid, Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites, J. Porous Mater., 17 (2010) 39-47.
DOI: 10.1007/s10934-009-9262-y
Google Scholar
[2]
A.A. Ismail, R.M. Mohamed, I.A. Ibrahim, G. Kini, B. Koopman, Synthesis, optimization and characterization of zeolite A and its ion-exchange properties, Colloids Surf A Physicochem Eng Asp, 366 (2010) 80-87.
DOI: 10.1016/j.colsurfa.2010.05.023
Google Scholar
[3]
S. Aguado, J. Gascón, J.C. Jansen, F. Kapteijn, Continuous synthesis of NaA zeolite membranes, Microporous Mesoporous Mater., 120 (2009) 170-176.
DOI: 10.1016/j.micromeso.2008.08.062
Google Scholar
[4]
Y. Zhao, B. Zhang, X. Zhang, J. Wang, J. Liu, R. Chen, Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions, J. Hazard. Mater., 178 (2010) 658-664.
DOI: 10.1016/j.jhazmat.2010.01.136
Google Scholar
[5]
B. Bayati, A.A. Babaluo, R. Karimi, Hydrothermal synthesis of nanostructure NaA zeolite: The effect of synthesis parameters on zeolite seed size and crystallinity, J. Eur. Ceram. Soc., 28 (2008) 2653-2657.
DOI: 10.1016/j.jeurceramsoc.2008.03.033
Google Scholar
[6]
Z. Xue, Z. Li, J. Ma, X. Bai, Y. Kang, W. Hao, R. Li, Effective removal of Mg2+ and Ca2+ ions by mesoporous LTA zeolite, Desalination, 341 (2014) 10-18.
DOI: 10.1016/j.desal.2014.02.025
Google Scholar
[7]
A.R. Loiola, J.C.R.A. Andrade, J.M. Sasaki, L.R.D. da Silva, Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener, J. Colloid Interface Sci., 367 (2012) 34-39.
DOI: 10.1016/j.jcis.2010.11.026
Google Scholar
[8]
J. Yang, K. Qiu, Development of high surface area mesoporous activated carbons from herb residues, Chem. Eng. J., 167 (2011) 148-154.
DOI: 10.1016/j.cej.2010.12.013
Google Scholar
[9]
W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chanthai, C. Ruangviriyachai, Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties, Chem. Eng. Res. Des., 89 (2011).
DOI: 10.1016/j.cherd.2010.06.012
Google Scholar
[10]
V. Jegatheesan, S.H. Kim, C.K. Joo, B. Gao, Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water, J Environ Sci., 21 (2009) 23-29.
DOI: 10.1016/s1001-0742(09)60006-1
Google Scholar
[11]
T. Lin, W. Chen, L. Wang, Particle properties in granular activated carbon filter during drinking water treatment, J Environ Sci., 22 (2010) 681-688.
DOI: 10.1016/s1001-0742(09)60163-7
Google Scholar
[12]
T. Tepamat, C. Mongkolkachit, S. Wanakitti, T. Wasanapiarnpong, Preparation of Activated Carbon and Zeolite NaA Composites from Rice Husk for Water Filtration, Key Eng. Mater., 608 (2014) 241.
DOI: 10.4028/www.scientific.net/kem.608.241
Google Scholar
[13]
L.M. Colyer, G.N. Greaves, S.W. Carr, K.K. Fox, Collapse and Recrystallization Processes in Zinc-Exchanged Zeolite-A: A Combined X-ray Diffraction, XAFS, and NMR Study, J. Phys. Chem. B, 101 (1997) 10105-10114.
DOI: 10.1021/jp9718008
Google Scholar
[14]
S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of zeolite science and technology, Marcel Dekker, New York, (2003).
Google Scholar