Influence of Carbon Nanotubes on Photocatalytic Activities of Titanium Dioxide Nanocomposite Powders

Article Preview

Abstract:

This research aims to produce TiO2-based composite powder by growing of carbon nanotubes (CNTs) on the surface of micron-sized TiO2 particles using a chemical vapor deposition (CVD) technique. This nanocomposite powder will be further used as feedstock powder to build up as a coating using a thermal spray technique. This coating is expected to have better photocatalytic efficiency over that of pure TiO2 coating. For composite powder preparation, rutile-phase of TiO2 powder with particle size in a range of 25 – 45 µm was used as a starting powder. The powder was placed in a CVD apparatus under ethanol atmosphere as a carbon source. The best CNTs growing condition was found to be 650°C for 60 min. The starting powder and as-synthesized composite powders were characterized by scanning electron microscopy, energy dispersive spectrum, Raman spectroscopy and UV-vis spectroscopy. The results showed that CNTs were successfully grown in-situ on the surface of TiO2 particles. The photocatalytic activities under visible-light were examined based on a degradation of methylene blue. The degradation efficiency of the TiO2/CNTs composite powder was found to be higher than that of pure TiO2. It is expected that the TiO2/CNTs nanocomposite powder could be further used to fabricate various of nanocomposite products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

315-320

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Hoffmann, T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[2] B. Kosowska, S. Mozia, A.W. Morawski, B. Grzmil, M. Janus, K. Kalucki, The preparation of TiO2-nitrogen doped by calcination of TiO2•xH2O under ammonia atmosphere for visible light photocatalysis, Sol. Energy. Mater. Sol. Cells. 88 (2005) 80-269.

DOI: 10.1016/j.solmat.2004.11.001

Google Scholar

[3] S. Kohtani, M. Tomohiro, K. Tokumura, R. Nakagaki, Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalyst, Appl. Catal. B. Environ. 58 (2005) 72-265.

DOI: 10.1016/j.apcatb.2004.12.007

Google Scholar

[4] V. Nadtochenko, N. Denisov, O. Sarjusiv, D. Gumy, C. Pulgarin, J. Kiwi, Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO2, J Photochem. Photobiol. A. Chem. 181 (2006) 7-401.

DOI: 10.1016/j.jphotochem.2005.12.028

Google Scholar

[5] Y. Liu, X. Wang, F. Yang, X. Yang, Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mater. 114 (2008) 9-431.

DOI: 10.1016/j.micromeso.2008.01.032

Google Scholar

[6] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol C: Photochem. Reviews 1 (2000) 1-21.

Google Scholar

[7] K. Tanaka, T. Hisansga, A.P. Rivera, in: D.F. Ollisand, H. Ai-Ekabi (Eds. ), Photocatalytic purification and treatment of water and air, Elsevier Science Publishers, 1993, pp.169-178.

Google Scholar

[8] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobio. C: Photochem. Rev. (2000) 1-21.

Google Scholar

[9] K. -i. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yield of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobio. A: Chem. 134 (2000) 139-142.

DOI: 10.1016/s1010-6030(00)00264-1

Google Scholar

[10] T.A. Saleh, The role of carbon nanotubes in enhancement of photocatalysis, Synthesis and applications of carbon nanotubes and their composite, book edited by Satoru Suzuki (Ed. ), ISBN: 978-953-51-1125-2, InTechOpen, 2013, pp.480-493.

Google Scholar

[11] Y. Yu, J. C. Yu, C-Y. Chan, Y-K Che, J-C. Zhao, L. Ding, W-K. Ge, P-K. Wong, Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes, Appl. Cata. A: General 289 (2005) 186-196.

DOI: 10.1016/j.apcata.2005.04.057

Google Scholar

[12] Y. Yu, J. C. Yu, C-Y. Chan, Y-K Che, J-C. Zhao, L. Ding, W-K. Ge, P-K. Wong, Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye, Appl. Cata. B. 61 (2005) 1-11.

DOI: 10.1016/j.apcatb.2005.03.008

Google Scholar

[13] C-H. Wu, C-Y. Kuo, S-T. Chen, Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light Irradiation, Envi. Techno. 34 (2013) 2513-2519.

DOI: 10.1080/09593330.2013.774058

Google Scholar

[14] S. Costa, E. Borowiak-Palen, M. Kruszyñska, A. Bachmatiuk, R.J. Kalenczuk, Characterization of carbon nanotubes by raman spectroscopy, Mater. Science-Poland, 26 (2008) 433-441.

Google Scholar

[15] R.T.K. Baker, Catalyst growth of carbon filaments, Carbon, 27 (1989) 315.

Google Scholar

[16] H. Kanzow, A. Ding, Formation mechanism of single-wall carbon nanotubes on liquid-metal particles, Phys. Rev. B; 60 (1999) 11180.

DOI: 10.1103/physrevb.60.11180

Google Scholar

[17] P. Deak, B. Aradi, T. Frauenheim, Band lineup and charge carrier separation in mixed rutile-anatase systems, J. Phys. Chem. C 115 (2011) 3443-3446.

DOI: 10.1021/jp1115492

Google Scholar

[18] C-Y. Kuo, Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process, J. Hazd. Mater. 63 (2009) 239-244.

DOI: 10.1016/j.jhazmat.2008.06.083

Google Scholar

[19] J.C. Yu, L.Z. Zhang, J.G. Yu, Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework, Chem. Mater. 14 (2002) 4647-4653.

DOI: 10.1021/cm0203924

Google Scholar

[20] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar