[1]
ASM handbook, Vol. 7, Powder metal technologies and applications, ASM International, (1998).
Google Scholar
[2]
W.C. Orthwein, Clutches and brakes design and selection, second ed., Marcel Dekker, New York, (2004).
Google Scholar
[3]
M. Kazuya, M. Teruo, H. Mikio, EU Patent 0538772B1 (1996).
Google Scholar
[4]
S. Kung, A study of friction and wear characteristics of copper-and iron-based sintered material, Wear 162-164 (2003) 1123-1128.
DOI: 10.1016/0043-1648(93)90131-5
Google Scholar
[5]
B.T. Collins, C.P. Schneider, Sintered-metal friction material, in: Editors: H.H. Hausner (Ed. ), Modern Development in Powder metallurgy, Springer International Publishing, Switzerland, 1996, 160-165.
Google Scholar
[6]
M. Asif, K. Chandra, P.S. Misra, Development of iron brake friction MMC used for military aircraft application by a new P/M route, JMMCE. 10 (2011) 693-705.
DOI: 10.4236/jmmce.2011.108054
Google Scholar
[7]
J.A.L. Jr. Esswein, F.E. Arrieche, L. Schaeffer, Analysis of wear in organic and sintered friction material used in small wind energy converters, Mater. Res. 11(2008) 269-273.
DOI: 10.1590/s1516-14392008000300007
Google Scholar
[8]
N. Saunders, A.P. Mlodownlk, The Cu-Sn (copper-tin) system, Bull. Alloy Phase Diagrams. 11(1990) 278-287.
DOI: 10.1007/bf03029299
Google Scholar
[9]
S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, The Cu-Sn phase diagram, Part I: New experimental result, Intermetallics 34 (2013) 142-147.
DOI: 10.1016/j.intermet.2012.10.004
Google Scholar
[10]
G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, C. Bindal, The effect of sintering temperature on some properties of Cu–SiC composite, J. Alloys Compd. 509 (2011) 6036-6042.
DOI: 10.1016/j.jallcom.2011.02.170
Google Scholar
[11]
G. Celebi Efe, I. Altinsoy, T. Yener, M. Ipek, S. Zeytin and C. Bindal, Characterization of cemented Cu matrix composites reinforced with SiC, Vacuum 85 (2010) 643-647.
DOI: 10.1016/j.vacuum.2010.09.009
Google Scholar
[12]
R.W. Olesinski, G.J. Abbaschian, The Cu−Si (Copper-Silicon) system, Bull. Alloy Phase Diagrams. 7 (1986) 170-178.
DOI: 10.1007/bf02881559
Google Scholar
[13]
K. Sufryd, N. Ponweiser, P. Riani, K.W. Richter, G. Cacciamani, Experimental investigation of the Cu–Si phase diagram at x(Cu) > 0. 72, Intermetallics 19 (2011) 1479-1488.
DOI: 10.1016/j.intermet.2011.05.017
Google Scholar
[14]
W. Gierlotka, Md.A. Haque, On the binary (Cu + Si) system: Thermodynamic modelling of the phase diagram and atomic mobility in face centred cubic phase, J. Chem. Thermodyn. 57 (2013) 32-38.
DOI: 10.1016/j.jct.2012.07.025
Google Scholar
[15]
G. Sundberg, P. Paul, C. Sung, T. Vasilos, Fabrication of CuSiC metal matrix composites, J. Mater. Sci. 41 (2006) 485-504.
DOI: 10.1007/s10853-005-2622-3
Google Scholar
[16]
Z. Wang, P. Wynblatt, Study of a reaction at the solid Cu/α-SiC interface, J. Mater. Sci. 33 (1998) 1177-1181.
Google Scholar
[17]
R. Tongsri, B. Vetayanugul, Thermal analysis of Fe-Carbide and Fe-C mixtures, J. Met. Mater. Miner. 20 (2010) 45-49.
Google Scholar
[18]
S. Chakthin, N. Poolthong, N. Thavarungkul, R. Tongsri, Iron-carbide composites prepared by P/M, The Minerals, Metals and Materials Society - 3rd International Conference on Processing Materials for Properties 2008, PMP III, 1, pp.571-578.
Google Scholar
[19]
S. Chakthin, N. Poolthong, R. Tongsri, Effect of reaction between Fe and carbide particles on mechanical properties of Fe-base composite, Adv. Mat. Res. 55-57 (2008) 357-360.
DOI: 10.4028/www.scientific.net/amr.55-57.357
Google Scholar
[20]
O. Coovattanachai, S. Mima, T. Yodkaew, R. Krataitong, M. Morkotjinda, A. Daraphan, N. Tosangthum, B. Vetayanugul, A. Panumas, N. Poolthong, R. Tongsri, Effect of admixed ceramic particles on properties of sintered 316L stainless steel, Advances in Powder Metallurgy and Particulate Materials-2006, Proceedings of the 2006 International Conference on Powder Metallurgy and Particulate Materials, Powder Met 2006, pp.7161-7171.
DOI: 10.1016/j.msea.2006.09.105
Google Scholar
[21]
K. Shubhank, Y-B. Kang, Critical evaluation and thermodynamic optimization of Fe–Cu, Cu–C, Fe–C binary systems and Fe–Cu–C ternary system, Calphad 45 (2014) 127-137.
DOI: 10.1016/j.calphad.2013.12.002
Google Scholar