Sintered Frictional SiC-Reinforced Cu-Base Composites

Article Preview

Abstract:

Lead-free frictional materials are important components in safety and power transmission parts of automobiles. In order to avoid using lead-containing friction modifiers, non-toxic ceramic particles are considered to be used as reinforcements. In this research work, copper-based friction materials have been developed by using press and sinter method. Pre-alloyed bronze (Cu-10Sn) powder was admixed with iron (Fe), graphite (C) and varied amounts of silicon carbide (SiC) powders. The admixed powders were compacted into disc-shape samples, which were then sintered at different temperatures in the range of 800-950 °C. It was found that sintered density and hardness of the sintered copper-based friction materials reduced with increasing SiC content. Microstructures of the sintered materials showed inhomogeneity due to uneven distribution of coarse Fe and SiC particles. The coarse SiC particles also prohibited bonding between metal powder particles. However, the sintered materials showed high room-temperature friction coefficients, which were in the range of 0.50-0.90, particularly the materials containing 4 wt. % of SiC particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

345-349

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASM handbook, Vol. 7, Powder metal technologies and applications, ASM International, (1998).

Google Scholar

[2] W.C. Orthwein, Clutches and brakes design and selection, second ed., Marcel Dekker, New York, (2004).

Google Scholar

[3] M. Kazuya, M. Teruo, H. Mikio, EU Patent 0538772B1 (1996).

Google Scholar

[4] S. Kung, A study of friction and wear characteristics of copper-and iron-based sintered material, Wear 162-164 (2003) 1123-1128.

DOI: 10.1016/0043-1648(93)90131-5

Google Scholar

[5] B.T. Collins, C.P. Schneider, Sintered-metal friction material, in: Editors: H.H. Hausner (Ed. ), Modern Development in Powder metallurgy, Springer International Publishing, Switzerland, 1996, 160-165.

Google Scholar

[6] M. Asif, K. Chandra, P.S. Misra, Development of iron brake friction MMC used for military aircraft application by a new P/M route, JMMCE. 10 (2011) 693-705.

DOI: 10.4236/jmmce.2011.108054

Google Scholar

[7] J.A.L. Jr. Esswein, F.E. Arrieche, L. Schaeffer, Analysis of wear in organic and sintered friction material used in small wind energy converters, Mater. Res. 11(2008) 269-273.

DOI: 10.1590/s1516-14392008000300007

Google Scholar

[8] N. Saunders, A.P. Mlodownlk, The Cu-Sn (copper-tin) system, Bull. Alloy Phase Diagrams. 11(1990) 278-287.

DOI: 10.1007/bf03029299

Google Scholar

[9] S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, The Cu-Sn phase diagram, Part I: New experimental result, Intermetallics 34 (2013) 142-147.

DOI: 10.1016/j.intermet.2012.10.004

Google Scholar

[10] G. Celebi Efe, T. Yener, I. Altinsoy, M. Ipek, S. Zeytin, C. Bindal, The effect of sintering temperature on some properties of Cu–SiC composite, J. Alloys Compd. 509 (2011) 6036-6042.

DOI: 10.1016/j.jallcom.2011.02.170

Google Scholar

[11] G. Celebi Efe, I. Altinsoy, T. Yener, M. Ipek, S. Zeytin and C. Bindal, Characterization of cemented Cu matrix composites reinforced with SiC, Vacuum 85 (2010) 643-647.

DOI: 10.1016/j.vacuum.2010.09.009

Google Scholar

[12] R.W. Olesinski, G.J. Abbaschian, The Cu−Si (Copper-Silicon) system, Bull. Alloy Phase Diagrams. 7 (1986) 170-178.

DOI: 10.1007/bf02881559

Google Scholar

[13] K. Sufryd, N. Ponweiser, P. Riani, K.W. Richter, G. Cacciamani, Experimental investigation of the Cu–Si phase diagram at x(Cu) > 0. 72, Intermetallics 19 (2011) 1479-1488.

DOI: 10.1016/j.intermet.2011.05.017

Google Scholar

[14] W. Gierlotka, Md.A. Haque, On the binary (Cu + Si) system: Thermodynamic modelling of the phase diagram and atomic mobility in face centred cubic phase, J. Chem. Thermodyn. 57 (2013) 32-38.

DOI: 10.1016/j.jct.2012.07.025

Google Scholar

[15] G. Sundberg, P. Paul, C. Sung, T. Vasilos, Fabrication of CuSiC metal matrix composites, J. Mater. Sci. 41 (2006) 485-504.

DOI: 10.1007/s10853-005-2622-3

Google Scholar

[16] Z. Wang, P. Wynblatt, Study of a reaction at the solid Cu/α-SiC interface, J. Mater. Sci. 33 (1998) 1177-1181.

Google Scholar

[17] R. Tongsri, B. Vetayanugul, Thermal analysis of Fe-Carbide and Fe-C mixtures, J. Met. Mater. Miner. 20 (2010) 45-49.

Google Scholar

[18] S. Chakthin, N. Poolthong, N. Thavarungkul, R. Tongsri, Iron-carbide composites prepared by P/M, The Minerals, Metals and Materials Society - 3rd International Conference on Processing Materials for Properties 2008, PMP III, 1, pp.571-578.

Google Scholar

[19] S. Chakthin, N. Poolthong, R. Tongsri, Effect of reaction between Fe and carbide particles on mechanical properties of Fe-base composite, Adv. Mat. Res. 55-57 (2008) 357-360.

DOI: 10.4028/www.scientific.net/amr.55-57.357

Google Scholar

[20] O. Coovattanachai, S. Mima, T. Yodkaew, R. Krataitong, M. Morkotjinda, A. Daraphan, N. Tosangthum, B. Vetayanugul, A. Panumas, N. Poolthong, R. Tongsri, Effect of admixed ceramic particles on properties of sintered 316L stainless steel, Advances in Powder Metallurgy and Particulate Materials-2006, Proceedings of the 2006 International Conference on Powder Metallurgy and Particulate Materials, Powder Met 2006, pp.7161-7171.

DOI: 10.1016/j.msea.2006.09.105

Google Scholar

[21] K. Shubhank, Y-B. Kang, Critical evaluation and thermodynamic optimization of Fe–Cu, Cu–C, Fe–C binary systems and Fe–Cu–C ternary system, Calphad 45 (2014) 127-137.

DOI: 10.1016/j.calphad.2013.12.002

Google Scholar