[1]
S.M.O. Tavares, P.M.G.P. Moreira, S.D. Pastrama, P.M.S.T. Castro, Stress intensity factors by numerical evaluation in cracked structure, http: /paginas. fe. up. pt/~pedrom/artigos2/Fract_Sergio. pdf.
Google Scholar
[2]
L. Banks-Sills, Update application of the finite element method to linear elastic fracture mechanics. Applied Mechanics Reviews 63(2) (2010) 02080.
DOI: 10.1115/1.4000798
Google Scholar
[3]
X.W. Gao, G. Trevor, Davies, Boundary elements programming in mechanics, U.K. Cambridge University Press, xvi, 254 (2001).
Google Scholar
[4]
Y.M. Chen, Numerical computation of dynamic stress intensity factors by a Lagrangian finite difference method, Engrg. Fract. Mech. 7 (1975) 653-660.
DOI: 10.1016/0013-7944(75)90021-1
Google Scholar
[5]
K. Dréau, N. Chevaugeon, N. Moës, Studied X-FEM enrichment to handle material interfaces with higher order finite element, Computer Meth. in App. Mech. and Eng., 199 (2010) 1922-(1936).
DOI: 10.1016/j.cma.2010.01.021
Google Scholar
[6]
B. Xu, W.F. Xie, M. Viens, E. Mohseni, L. Birglen, I. Mantegh, Intelligent Eddy Current Crack Detection System Design Based on NeuroFuzzy Logic, International Workshop on Smart Materials, Structures NDT in Canada 2013 Conference & NDT for the Energy.
Google Scholar
[7]
P. Horan, P.R. Underhill, T.W. Krause, Pulsed eddy current detection of cracks in F/A- 18 inner wing spar without wing skin removal using modified principal component analysis, NDT&E International, 55 (2013) 21-27.
DOI: 10.1016/j.ndteint.2013.01.004
Google Scholar
[8]
P.F. Horan, P.R. Underhill, T.W. Krause, Real time pulsed eddy current detection of cracks in F/A-18 inner wing spar using discriminate separation of modified principal components analysis scores, IEEE Sensors Journal (2013).
DOI: 10.1109/jsen.2013.2281368
Google Scholar
[9]
M. Rachek, M. Feliachi, 3-D movement simulation techniques using FE methods: Application to eddy current non-destructive testing, NDT&E International, 40(1) (2007) 35-42.
DOI: 10.1016/j.ndteint.2006.07.008
Google Scholar
[10]
S. Bennoud, M. Zergoug, Modeling and Simulation for 3D Eddy Current Testing in Conducting Mat. Int. J. of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 8(4) ( 2014).
Google Scholar
[11]
J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, 35 (1968) 379-386.
DOI: 10.1115/1.3601206
Google Scholar
[12]
S. Mohammadi, Extended Finite Element Method, United Kingdom, (2008).
Google Scholar
[13]
N. K. Mukhopadhyay, S.K. Maiti, A. Kakodkar, Review of SIF evaluation and modeling of singularities in BEM, Journal of Computational Mechanics, 25(4) (2000) 358-375.
DOI: 10.1007/s004660050483
Google Scholar
[15]
A. Combescure, A. Gravouil, D. Grégoire, D.J. Réthore, X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation, Journal of Computational Methods Applied Mechanics Engineering, 197 (2008) 309–318.
DOI: 10.1016/j.cma.2007.04.011
Google Scholar
[16]
S. Glodez, M. Sraml, J. Kramberger, A computational model for determination of service life of gears, Int. Jo. of Fatigue, 24 (10) (2002) 1013-1020.
DOI: 10.1016/s0142-1123(02)00024-5
Google Scholar
[17]
S. Harzallah, M. Chabaat, Nondestructive Technique for the Determination of Cracks Parameters by Eddy Current in Differential Mode, J. of Applied Mech. and Mat., 532 (2014) 81-87.
DOI: 10.4028/www.scientific.net/amm.532.81
Google Scholar