Formulation for Stress Intensity Factors and J-Integral Calculation by Eddy Current Testing

Article Preview

Abstract:

In this paper, we present a method for computing the Stress Intensity Factor (SIF) and J-Integral, by measuring and testing related Eddy currents. In the process, we provide a magnetic vector based formulations for the theoretical set up. Furthermore, we provide relevant applications having theory consistent results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-230

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.M.O. Tavares, P.M.G.P. Moreira, S.D. Pastrama, P.M.S.T. Castro, Stress intensity factors by numerical evaluation in cracked structure, http: /paginas. fe. up. pt/~pedrom/artigos2/Fract_Sergio. pdf.

Google Scholar

[2] L. Banks-Sills, Update application of the finite element method to linear elastic fracture mechanics. Applied Mechanics Reviews 63(2) (2010) 02080.

DOI: 10.1115/1.4000798

Google Scholar

[3] X.W. Gao, G. Trevor, Davies, Boundary elements programming in mechanics, U.K. Cambridge University Press, xvi, 254 (2001).

Google Scholar

[4] Y.M. Chen, Numerical computation of dynamic stress intensity factors by a Lagrangian finite difference method, Engrg. Fract. Mech. 7 (1975) 653-660.

DOI: 10.1016/0013-7944(75)90021-1

Google Scholar

[5] K. Dréau, N. Chevaugeon, N. Moës, Studied X-FEM enrichment to handle material interfaces with higher order finite element, Computer Meth. in App. Mech. and Eng., 199 (2010) 1922-(1936).

DOI: 10.1016/j.cma.2010.01.021

Google Scholar

[6] B. Xu, W.F. Xie, M. Viens, E. Mohseni, L. Birglen, I. Mantegh, Intelligent Eddy Current Crack Detection System Design Based on NeuroFuzzy Logic, International Workshop on Smart Materials, Structures NDT in Canada 2013 Conference & NDT for the Energy.

Google Scholar

[7] P. Horan, P.R. Underhill, T.W. Krause, Pulsed eddy current detection of cracks in F/A- 18 inner wing spar without wing skin removal using modified principal component analysis, NDT&E International, 55 (2013) 21-27.

DOI: 10.1016/j.ndteint.2013.01.004

Google Scholar

[8] P.F. Horan, P.R. Underhill, T.W. Krause, Real time pulsed eddy current detection of cracks in F/A-18 inner wing spar using discriminate separation of modified principal components analysis scores, IEEE Sensors Journal (2013).

DOI: 10.1109/jsen.2013.2281368

Google Scholar

[9] M. Rachek, M. Feliachi, 3-D movement simulation techniques using FE methods: Application to eddy current non-destructive testing, NDT&E International, 40(1) (2007) 35-42.

DOI: 10.1016/j.ndteint.2006.07.008

Google Scholar

[10] S. Bennoud, M. Zergoug, Modeling and Simulation for 3D Eddy Current Testing in Conducting Mat. Int. J. of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 8(4) ( 2014).

Google Scholar

[11] J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, 35 (1968) 379-386.

DOI: 10.1115/1.3601206

Google Scholar

[12] S. Mohammadi, Extended Finite Element Method, United Kingdom, (2008).

Google Scholar

[13] N. K. Mukhopadhyay, S.K. Maiti, A. Kakodkar, Review of SIF evaluation and modeling of singularities in BEM, Journal of Computational Mechanics, 25(4) (2000) 358-375.

DOI: 10.1007/s004660050483

Google Scholar

[15] A. Combescure, A. Gravouil, D. Grégoire, D.J. Réthore, X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation, Journal of Computational Methods Applied Mechanics Engineering, 197 (2008) 309–318.

DOI: 10.1016/j.cma.2007.04.011

Google Scholar

[16] S. Glodez, M. Sraml, J. Kramberger, A computational model for determination of service life of gears, Int. Jo. of Fatigue, 24 (10) (2002) 1013-1020.

DOI: 10.1016/s0142-1123(02)00024-5

Google Scholar

[17] S. Harzallah, M. Chabaat, Nondestructive Technique for the Determination of Cracks Parameters by Eddy Current in Differential Mode, J. of Applied Mech. and Mat., 532 (2014) 81-87.

DOI: 10.4028/www.scientific.net/amm.532.81

Google Scholar