Preliminary Results on Microstructural, Chemical and Wear Analyze of New Cast Iron with Chromium Addition

Article Preview

Abstract:

A new cast-iron material was obtained by melting in an induction furnace. The material was microstructural and chemical characterized before and after a wear test. We analyze the chemical composition of the material at macro-scale using a Spark Spectrometer and at micro-scale using Dispersive Energy Spectrometer. Microstructure before and after the external solicitations was observed using a Scanning Electron Microscope. We also evaluate the influence of external force on the dendrites microstructural and chemical modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-102

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.H. Tang, R. Chung, D.Y. Li, B. Hinckley, K. Dolman, Variations in microstructure of high chromium cast irons and resultant changes in resistance to wear, corrosion and corrosive wear, Wear 267 (2009) 116–121.

DOI: 10.1016/j.wear.2008.11.025

Google Scholar

[2] P. Filip, L. Kovarik, M. Wright, Automotive brake lining characterization, in: Proc. of 15th Annual SAE Brake Colloquium 1997, SAE, Warendale, PA, (1997) 319.

DOI: 10.4271/973024

Google Scholar

[3] C. Nejneru; P. Vizureanu; A.V. Sandu; A. Grecu; N. Cimpoesu, Thermal Fatigue of Some Synthetic Hardening Environments with CMC, Revista de Chimie 65 (2014) 194-198.

Google Scholar

[4] P. Filip, Z. Weiss, D. Rafaja, On friction layer formation in polymer matrix composite materials for brake applications, Wear 252 (2002) 189–198.

DOI: 10.1016/s0043-1648(01)00873-0

Google Scholar

[5] B.D. Garg, S.H. Cadle, P.A. Mulawa, P.J. Groblicki, Brake wear particulate matter emissions, Environ. Sci. Technol. 34 (2000) 4463–4469.

DOI: 10.1021/es001108h

Google Scholar

[6] P.G. Sanders, N. Xu, T.M. Dalka, M.M. Marricq, Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle test, Environ. Sci. Technol. 37 (2003) 4060–4069.

DOI: 10.1021/es034145s

Google Scholar

[7] P.J. Blau, H.M. Meyer III, Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials, Wear 255 (2003) 1261–1269.

DOI: 10.1016/s0043-1648(03)00111-x

Google Scholar

[8] P. Filip, K. Butson, H. Lorethova, L. Kovarik, M.A. Wright, Stereology and Quantitative Image Analysis Quarterly Report to the Center for Advanced Friction Studies, vol. 4 No. 1, (2000).

Google Scholar

[9] M. Kristkova, P. Filip, Z. Weiss, R. Peter, Influence of metals on the phenolformaldehyde resin degradation in friction composites, Polym. Degrad. Stab. 84 (2004) 49–60.

DOI: 10.1016/j.polymdegradstab.2003.09.012

Google Scholar

[10] Li D., Liu L, Zhang Y, et al. Phase Diagram Calculation of High Chromium Cast Irons and Influence of Its Chemical Composition, Materials and Design 30 ( 2009) 340.

DOI: 10.1016/j.matdes.2008.04.061

Google Scholar

[11] G. Oberdorster, E. Oberd ¨ orster, J. Oberdorster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect. 113 (2005) 823–839.

DOI: 10.1289/ehp.7339

Google Scholar

[12] Z. Weiss, J.C. Crelling, G. Martynkova, P. Filip, Identification of carbon forms and other phases in automotive brake composites using multiple analytical techniques, Carbon 44 (2006) 792–798.

DOI: 10.1016/j.carbon.2005.06.048

Google Scholar

[13] D.C. Montgomery, Design and Analysis of Experiments, John Willey and Sons, (2004).

Google Scholar

[14] A. Sellami, M. Kchaou, R. Elleuch, A. -L. Cristol, Y. Desplanques. Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material, Materials and Design 59 (2014) 84–93.

DOI: 10.1016/j.matdes.2014.02.025

Google Scholar

[15] A.V. Sandu; A. Ciomaga; G. Nemtoi; C. Bejinariu; I. Sandu, SEM-EDX and Micro-Ftir studies on evaluation of protection capacity of some thin phosphate layers, Microscopy research and technique 75 (2012) 1711-1716.

DOI: 10.1002/jemt.22120

Google Scholar