[1]
X.H. Tang, R. Chung, D.Y. Li, B. Hinckley, K. Dolman, Variations in microstructure of high chromium cast irons and resultant changes in resistance to wear, corrosion and corrosive wear, Wear 267 (2009) 116–121.
DOI: 10.1016/j.wear.2008.11.025
Google Scholar
[2]
P. Filip, L. Kovarik, M. Wright, Automotive brake lining characterization, in: Proc. of 15th Annual SAE Brake Colloquium 1997, SAE, Warendale, PA, (1997) 319.
DOI: 10.4271/973024
Google Scholar
[3]
C. Nejneru; P. Vizureanu; A.V. Sandu; A. Grecu; N. Cimpoesu, Thermal Fatigue of Some Synthetic Hardening Environments with CMC, Revista de Chimie 65 (2014) 194-198.
Google Scholar
[4]
P. Filip, Z. Weiss, D. Rafaja, On friction layer formation in polymer matrix composite materials for brake applications, Wear 252 (2002) 189–198.
DOI: 10.1016/s0043-1648(01)00873-0
Google Scholar
[5]
B.D. Garg, S.H. Cadle, P.A. Mulawa, P.J. Groblicki, Brake wear particulate matter emissions, Environ. Sci. Technol. 34 (2000) 4463–4469.
DOI: 10.1021/es001108h
Google Scholar
[6]
P.G. Sanders, N. Xu, T.M. Dalka, M.M. Marricq, Airborne brake wear debris: size distributions, composition, and a comparison of dynamometer and vehicle test, Environ. Sci. Technol. 37 (2003) 4060–4069.
DOI: 10.1021/es034145s
Google Scholar
[7]
P.J. Blau, H.M. Meyer III, Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials, Wear 255 (2003) 1261–1269.
DOI: 10.1016/s0043-1648(03)00111-x
Google Scholar
[8]
P. Filip, K. Butson, H. Lorethova, L. Kovarik, M.A. Wright, Stereology and Quantitative Image Analysis Quarterly Report to the Center for Advanced Friction Studies, vol. 4 No. 1, (2000).
Google Scholar
[9]
M. Kristkova, P. Filip, Z. Weiss, R. Peter, Influence of metals on the phenolformaldehyde resin degradation in friction composites, Polym. Degrad. Stab. 84 (2004) 49–60.
DOI: 10.1016/j.polymdegradstab.2003.09.012
Google Scholar
[10]
Li D., Liu L, Zhang Y, et al. Phase Diagram Calculation of High Chromium Cast Irons and Influence of Its Chemical Composition, Materials and Design 30 ( 2009) 340.
DOI: 10.1016/j.matdes.2008.04.061
Google Scholar
[11]
G. Oberdorster, E. Oberd ¨ orster, J. Oberdorster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect. 113 (2005) 823–839.
DOI: 10.1289/ehp.7339
Google Scholar
[12]
Z. Weiss, J.C. Crelling, G. Martynkova, P. Filip, Identification of carbon forms and other phases in automotive brake composites using multiple analytical techniques, Carbon 44 (2006) 792–798.
DOI: 10.1016/j.carbon.2005.06.048
Google Scholar
[13]
D.C. Montgomery, Design and Analysis of Experiments, John Willey and Sons, (2004).
Google Scholar
[14]
A. Sellami, M. Kchaou, R. Elleuch, A. -L. Cristol, Y. Desplanques. Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material, Materials and Design 59 (2014) 84–93.
DOI: 10.1016/j.matdes.2014.02.025
Google Scholar
[15]
A.V. Sandu; A. Ciomaga; G. Nemtoi; C. Bejinariu; I. Sandu, SEM-EDX and Micro-Ftir studies on evaluation of protection capacity of some thin phosphate layers, Microscopy research and technique 75 (2012) 1711-1716.
DOI: 10.1002/jemt.22120
Google Scholar