Influence of Process Parameters on the Properties of TiO2 Films Deposited by a D.C. Magnetron Sputtering System on Glass Support

Article Preview

Abstract:

In this paper it has been deposited films of titanium oxide (TiO2), on a support of glass, by a D.C. magnetron sputtering system, by varying the working pressure (p = 2∙10-3 - 6.5∙10-3mbar) of the substrate temperature on three levels. The obtained layers were investigated and characterized by optical microscopy, Scanning Electron Microscopy SEM, X-ray diffraction and Atomic Force Microscopy. It was observed that, by modifying technological parameters of the process (working pressure and substrate temperature) it is changing the initial orientation of the compounds ((100) turns into (101) or (002)). The AFM analysis has allowed the observation of the fact that the average roughness of deposited films, expressed as RMS, has increased over 98% at the increasing of sputtering pressure from 2 10-3mbar to 6.5 10-3mbar. SEM analysis showed that the density of the deposit increases with substrate temperature. The granulation of the films obtained, presents an increasing trend with the variation of process parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-92

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Akl, H. Kamal, and K. Abdel-Hady, Fabrication and Characterization of Sputtered Titanium DioxideFilms, Applied Surface Science, 252 (2006) 8651-8656.

DOI: 10.1016/j.apsusc.2005.12.001

Google Scholar

[2] W. Yang and C. A. Wolden, Plasma-Enhanced Chemical Vapor Deposition of TiO2 Thin Films for Dielectric Applications, Thin Solid Films, 515(2006) 1708 -1713.

DOI: 10.1016/j.tsf.2006.06.010

Google Scholar

[3] Y.M. Sung and H. J. Kim, Sputter Deposition and Surface Treatment of TiO2 Films for Dye-Sensitized SolarCells Using Reactive RF Plasma, Thin Solid Films, 515 (2007) 4996 - 4999.

DOI: 10.1016/j.tsf.2006.10.079

Google Scholar

[4] S.B. Amor, G. Baud, M. Jacquet, and N. Pichon, Photoprotective Titania Coatings on PET Substrates, Surface and Coatings Technology, 102 (1998) 63-72.

DOI: 10.1016/s0257-8972(97)00558-6

Google Scholar

[5] A. Karuppasamy and A. Subrahmanyam, Studies on the Room Temperature Growth of Nanoanatase Phase TiO2Thin Films by Pulsed DC Magnetron With Oxygen as Sputter Gas, Journal of Applied Physics, 101 (2007).

DOI: 10.1063/1.2714770

Google Scholar

[6] S.L. Toma, M. Badescu, I. Ionita, M. Ciocoiu and L. Eva, Influence of the Spraying Distance and Jet Temperature on the Porosity and Adhesion of the Ti Depositions, Obtained by Thermal Spraying in Electric Arc - Thermal Activated, Applied Mechanics and Materials, 657 (2014).

DOI: 10.4028/www.scientific.net/amm.657.296

Google Scholar

[7] M. Jerman, D. Mergel, Structural Investigation of Thin TiO2 Films Prepared by Evaporation and Post- Heating, Thin Solid Films, 515(2007) 6904 -6908.

DOI: 10.1016/j.tsf.2007.01.038

Google Scholar

[8] C.J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J. O. Carneiro, A.J. Fernandes, Reactive Sputtering Deposition of Photocatalytic TiO2 Thin Films on Glass Substrates, Materials Science and Engineering: B, 138 (2007).

DOI: 10.1016/j.mseb.2005.11.043

Google Scholar

[9] V. Nedeff, E. Mosnegutu, M. Panainte, M. Ristea, St. Toma, M. Agop, Dynamics in the boundary layer of a flat particle, Powder Technology, 221 (2012) 312–317.

DOI: 10.1016/j.powtec.2012.01.019

Google Scholar

[10] C.H. Heo, S.B. Lee, J.H. Boo, Deposition of TiO2 Thin Films Using RF Magnetron Sputtering Method and Study of Their Surface Characteristics, Thin Solid Films, 475 (2005) 183 -188.

DOI: 10.1016/j.tsf.2004.08.033

Google Scholar

[11] S.L. Toma, The influence of jet gas temperature on the characteristics of steel coating obtained by wire arc spraying, Surf & Coat. Technol. 220 (2013) 261–265.

DOI: 10.1016/j.surfcoat.2012.12.006

Google Scholar

[12] Ş. A. Irimiciuc, M. Agop, P. Nica, S. Gurlui, D. Mihaileanu, St. Toma, C. Focsa, Dispersive effects in laser ablation plasmas, Jpn. J. Appl. Phys. (2014) 53.

DOI: 10.7567/jjap.53.116202

Google Scholar

[13] Z. Wang, U. Helmersson, and P. O. Käll, Optical Properties of Anatase TiO2 Thin Films Prepared by AqueousSol–Gel Process at Low Temperature, Thin Solid Films, 405(2002), pp.50-54. (064318).

DOI: 10.1016/s0040-6090(01)01767-9

Google Scholar

[14] Y. Q. Hou, D. M. Zhuang, G. Zhang, M. Zhao, and M. S. Wu, Influence of Annealing Temperature on the Properties of Titanium Oxide Thin Film, Applied Surface Science, 218 (2003) 98-106.

DOI: 10.1016/s0169-4332(03)00569-5

Google Scholar

[15] M.H. Suhail, G. Mohan, S. Mohan. DC reactive magnetron sputtering of Titanium-Structural and optical characterization of titania films J. Appl. Phys., 7(3) (1992) 1421-1427.

DOI: 10.1063/1.351264

Google Scholar

[16] M. Poiana, M. Dobromir, A.V. Sandu, V. Georgescu, Investigation of Structural, Magnetic and Magnetotransport Properties of Electrodeposited Co-TiO2 Nanocomposite Films, J. Supercond. Nov. Magnetism, 25 (2012) 2377-2387.

DOI: 10.1007/s10948-012-1612-3

Google Scholar

[17] A. Shibata, K. Okimura, Y. Yamamoto and K. Matubara, Effect of heating probe on reactively sputtered TiO2 film growth. Jpn. J. Appl. Phys, (1993).

DOI: 10.1143/jjap.32.5666

Google Scholar