Generation of Nanoscale Stripes at Failure of Amorphous Metals

Article Preview

Abstract:

We analyzed the failure characteristics of the metallic glass Co43Fe20Ta5.5B31.5 (at.%) deformed in bending. The nanoscale fracture surface morphology respects the micromechanisms of the failure of the amorphous structure. The fracture surfaces consist of nanosized dimples (40 nm) arranged in the lines respecting the periodic corrugation zones oriented perpendicular to the crack propagation direction. The corrugation topology exhibits the point nature of the generation site, the concentric form of the stress waves and their interference.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-224

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Sun, Q. Man, Y. Dong, et al., Effect of Nb addition on the glass-forming ability, mechanical and soft-magnetic properties in (Co0. 942Fe0. 058)72−xNbxB22. 4Si5. 6 bulk glassy alloys, J. of Alloy and Compouns 504 (2010).

DOI: 10.1016/j.jallcom.2010.03.044

Google Scholar

[2] Z.F. Zhang, F.F. Wu, W. Gao, J. Tan, Z.G. Wang, Wavy cleavage fracture of bulk metallic glass, Applied Physics Letters 89 (2006) 251917. DOI: 10. 1063/1. 2422895.

DOI: 10.1063/1.2422895

Google Scholar

[3] B. Shen, A. Inoue, Enhancement of the fracture strength and glass-forming ability of CoFeTaB bulk glassy alloy, J. Phys.: Condens. Matter 17 (2005) 5647. DOI: 10. 1088/0953-8984/17/37/003.

DOI: 10.1088/0953-8984/17/37/003

Google Scholar

[4] Y.T. Wang, X. K. Xi, G. Wang, X. X. Xia, W. H. Wang, Understanding of nanoscale periodic stripes on fracture surface of metallic glasses, J. Appl. Phys. 106 (2009) 113528. DOI: 10. 1063/1. 3267880.

DOI: 10.1063/1.3267880

Google Scholar

[5] L.F. Liu, H. A. Zhang, H. Q. Li, G. Y. Zhang, Nanoscale morphologies on the fracture surface of bulk metallic glasses in the supercooled liquid region, Scripta Mater. 60 (2009) 795-798. DOI: 10. 1016/j. scriptamat. 2009. 01. 022.

DOI: 10.1016/j.scriptamat.2009.01.022

Google Scholar

[6] X.X. Xia, W.H. Wang, Characterization and modeling of breaking-induced spontaneous nanoscale periodic stripes in metallic glasses, Small 8 (2012) 1197. DOI: 10. 1002/smll. 201101785.

DOI: 10.1002/smll.201101785

Google Scholar

[7] X. Teng, T. Wierzbicki, H. Couque, On the transition from adiabatic shear banding to fracture, Mechanics of Mater. 39 (2007) 107. DOI: 10. 1016/j. mechmat. 2006. 03. 001.

DOI: 10.1016/j.mechmat.2006.03.001

Google Scholar

[8] G. Wang, D. Q. Zhao, H. Y. Bai et al., Nanoscale Periodic Morphologies on the Fracture Surface of Brittle Metallic Glasses, Phys. Rev. Lett. 98 (2007) 235501. DOI: 10. 1103/PhysRevLett. 98. 235501.

DOI: 10.1103/physrevlett.98.235501

Google Scholar

[9] F. Kardos, D. Kral, J. Miskuf, J.S. Sereni, Fullerene graphs have exponentially many perfect matchings, J. of Mathematical Chemistry 46 (2009) 443-447. DOI: 10. 1007/s10910-008-9471-7.

DOI: 10.1007/s10910-008-9471-7

Google Scholar

[10] M.Q. Jiang, Z. Ling, J.X. Meng, L.H. Dai, Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage, Philosophical Magazine 88 (2008) 407-426. DOI: 10. 1080/14786430701864753.

DOI: 10.1080/14786430701864753

Google Scholar

[11] J.D. Bernal, Geometry of the Structure of Monatomic Liquids, Nature (London) 185 (1960) 68-70. DOI: 10. 1038/185068a0.

Google Scholar

[12] http: /en. wikipedia. org/wiki/Double-slit_experiment.

Google Scholar

[13] M. Gao, D.W. Ding, D.Q. Zhao, H.Y. Bai, W.H. Wang, Fracture morphology pattern transition dominated by the crack tip curvature radius in brittle metallic glasses, Materials Science and Engineering A 617 (2014).

DOI: 10.1016/j.msea.2014.08.060

Google Scholar