Light Alloys Structural Behaviour in Severe Environmental Conditions

Article Preview

Abstract:

High strength-to-mass ratio light alloys, such as 7075-T6 aluminium alloys and Ti-6Al-4V titanium alloys, are commonly adopted for high performance structural components in the aeronautic, automotive and maritime sectors. For this reason, it is crucial to investigate the effects of the external environment on their mechanical properties, to avoid dramatic component failure. In the present work, experimental tests were performed on Ti-6Al-4V and 7075-T6 light alloys. Ti-6Al-4V notched flat dogbone specimens, with Kt = 1.18, were tested for quasi-static and SCC effects in a methanol-water aggressive environment at different concentrations. Rotating bending R = -1 fatigue tests were performed on 7075-T6 in air and methanol environment, to evaluate the effects of an aggressive environment on the fatigue strength at 200’000 cycles. The influence of DLC and WC/C PVD coatings on fatigue limit at 200’000 cycles has been evaluated in air and aggressive environment, to assess their mechanical and protective effects on the 7075-T6 substrate

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-40

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Hirsch. Materials Transactions 52(5): 818-24, (2011).

Google Scholar

[2] S. Lomolino, R. Tovo, J. dos Santos. Int. J. Fatigue 27: 305-16, (2005).

Google Scholar

[3] S. Baragetti, G. D'Urso. J. Mech. Sci. Technol. 28(3): 867-77, (2013).

Google Scholar

[4] M. Kumar, N. Sotirov, C.M. Chimani. J. Mater. Process. Tech. 214: 1769-76, (2014).

Google Scholar

[5] B.F. Brown: Stress Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys. Washington D.C., Naval Research Lab, (1972).

Google Scholar

[6] G. Silva, B. Rivolta, R. Gerosa, U. Derudi. Mater. Eng. Perform. 22(1): 210-4, (2013).

Google Scholar

[7] K. K. Sankaran, R. Perez, K. V. Jata. Mater. Sci. Eng. A297: 223-9, (2001).

Google Scholar

[8] K. Genel. Eng. Fail. Anal. 32: 248-60, (2013).

Google Scholar

[9] E.S. Puchi-Cabrera, M.H. Staia, J. Lesage, et al. Int. J. Fatigue 30: 1220-30, (2008).

Google Scholar

[10] S. Baragetti, R. Gerosa, F. Villa. 43rd AIAS Conference Proceedings, Rimini, 9-12 Sept. (2014).

Google Scholar

[11] S. Baragetti, R. Gerosa, F. Villa. Key Eng. Mat. 627: 81-4, (2015).

Google Scholar

[12] S. Baragetti, R. Gerosa, F. Villa. Submitted to Eng. Fract. Mech., (2015).

Google Scholar

[13] R. H. Oskouei, R. N. Ibrahim. Procedia Eng. 10: 1936–42, (2011).

Google Scholar

[14] G. Lütjering and J. C. Williams: Titanium - 2nd ed. Berlin, Springer, (2007).

Google Scholar

[15] R. W. Schutz. H. B. Watkins. Mater. Sci. Eng. A243: 305-15, (1998).

Google Scholar

[16] R. W. Schutz. NACE Corrosion 2001 Conference Paper No. 01003, (2001).

Google Scholar

[17] I. Gurrappa. Mater. Charact. 51: 131-9, (2003).

Google Scholar

[18] S. P. Trasatti, E. Sivieri. Mater. Chem. Phys. 92: 475-9, (2005).

Google Scholar

[19] G. Sanderson, J. C. Scully. Corros. Sci. 8: 541-8, (1968).

Google Scholar

[20] D. B. Dawson. Metall. Trans. 12A: 791-800, (1981).

Google Scholar

[21] S. Baragetti. Surf. Interface Anal. 45: 1654-58, (2013).

Google Scholar

[22] S. Baragetti, R. Gerosa, F. Villa. Submitted to Corros. Rev., (2015).

Google Scholar

[23] C. Soares: Gas Turbines. Amsterdam: Elsevier, (2008).

Google Scholar

[24] ISO 1143: 2010 Standard. Metallic materials — Rotating bar bending fatigue testing, (2010).

Google Scholar

[25] Lafer: www. lafer. eu, (2015).

Google Scholar

[26] Matweb, www. matweb. com, (2015).

Google Scholar

[27] T. Nicholas. Fatigue Fract. Eng. Mater. Struct. 25: 861-9, (2002).

Google Scholar

[28] R. S. Bellows, S. Muju, T. Nicholas. Int. J. Fatigue 21: 687-97, (1999).

Google Scholar