A Micro-Mechanical Model for Grain-Boundary Cavitation in Polycrystalline Materials

Article Preview

Abstract:

In this work, the grain-boundary cavitation in polycrystalline aggregates is investigated by means of a grain-scale model. Polycrystalline aggregates are generated using Voronoi tessellations, which have been extensively shown to retain the statistical features of real microstructures. Nucleation, thickening and sliding of cavities at grain boundaries are represented by specific cohesive laws embodying the damage parameters, whose time evolution equations are coupled to the mechanical model. The formulation is presented within the framework of a grain-boundary formulation, which only requires the discretization of the grain surfaces. Some numerical tests are presented to demonstrate the feasibility of the method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-68

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.A. Mohamed & T.G. Langdon: Metall. Trans. Vol. 5 (1974), pp.2339-2345.

Google Scholar

[2] H.J. Frost & M.F. Ashby: Deformation mechanism maps: the plasticity and creep of metals and ceramics(Pergamon press, 1982).

Google Scholar

[3] J. Lemaitre & R. Desmorat: Engineering damage mechanics: ductile, creep, fatigue and brittle failures(Springer Science & Business Media, 2005).

DOI: 10.1002/zamm.200590044

Google Scholar

[4] B. Wilshire & A.J. Battenbough: Mat. Sci. Eng. A Vol. 443 (2007), pp.156-166.

Google Scholar

[5] M.T. Whittaker & B. Wilshire: Mat. Sci. Eng. A Vol. 527(2010), pp.4932-4938.

Google Scholar

[6] A.C.F. Cocks & M.F. Ashby: Creep fracture by void growth (Springer Berlin Heidelberg, 1981).

Google Scholar

[7] I. Benedetti & F. Barbe, Modelling Polycrystalline Materials: An Overview of Three-Dimensional Grain-Scale Mechanical Models. Journal of Multiscale Modelling, 5(01), (2013).

DOI: 10.1142/s1756973713500029

Google Scholar

[8] A. Needleman & J.R. Rice: Acta Metall. Vol. 28(1980), pp.1315-1332.

Google Scholar

[9] E. Van der Giessen, M.W.D. Van der Burg, A. Needleman & V. Tvergaard: J. Mech. Phys. Solids Vol. 43(1995), pp.123-165.

DOI: 10.1016/0022-5096(94)00059-e

Google Scholar

[10] M. Vöse, B. Fedelich & J. Owen: Comput. Mater. Sci. Vol. 58(2012), pp.201-213.

Google Scholar

[11] P. Onck & E. van der Giessen: Comput. Mater. Sci. Vol. 13(1998), pp.90-102.

Google Scholar

[12] C.H. Yu, C.W. Huang, C.S. Chen, Y. Gao & C.H. Hsueh: Eng. Fract. Mech., Vol. 93(2012), pp.48-64.

Google Scholar

[13] M. Vöse, F. Otto, B. Fedelich & G. Eggeler: Mech. Mater. Vol. 69(2014), pp.41-62.

Google Scholar

[14] O. Ozhoga-Maslovskaja, K. Naumenko, H. Altenbach & O. Prygorniev: Comput. Mater. Sci. Vol. 96 (2015), pp.178-184.

DOI: 10.1016/j.commatsci.2014.08.050

Google Scholar

[15] I. Benedetti & M.H. Aliabadi: Comput Mater Sci, Vol. 67 (2013), pp.249-260.

Google Scholar

[16] I. Benedetti & M.H. Aliabadi: Comput Meth Appl Mech Eng, Vol. 265 (2013), pp.36-62.

Google Scholar

[17] I. Benedetti & M.H. Aliabadi, Comput Meth Appl Mech Eng, Vol. 289 (2015), P. 429-453.

Google Scholar