[1]
K. Ghavami, Bamboo as reinforcement in structural concrete elements, Cement & Concrete Composites. 27 (2005) 637–649.
DOI: 10.1016/j.cemconcomp.2004.06.002
Google Scholar
[2]
Information on http: /www. wood-database. com/lumber-identification/monocots/bamboo.
Google Scholar
[3]
L. Zou, H. Jin, W.Y. Lu, X. Li, Nanoscale structural and mechanical characterization of the cell wall of bamboo fibbers, Materials Science and Engineering C. 29 (2009) 1375–1379.
DOI: 10.1016/j.msec.2008.11.007
Google Scholar
[4]
G. Zhang , Y. Liu, H. Morikawa, Y. Chen, Application of ZnO nanoparticles to enhance
the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric, Cellulose. 20 (2013) 1877–1884.
DOI: 10.1007/s10570-013-9979-2
Google Scholar
[5]
M. D. Teli, J. Sheikh, Study Of Grafted Silver Nanoparticle Containing Durable Antibacterial Bamboo Rayon, Cellulose Chem. Technol. 47 (2013) 69-75.
Google Scholar
[6]
H. Mucha, D. Hoter, M. Swerev, Antimicrobial Finishes and Modifications, Eds. Melliand International, (2002) cap 8 pp.148-151.
Google Scholar
[7]
F. Z. Hang, X. Wu, Y. Chen, A. H. Lin, Application of Silver Nanoparticles to Cotton Fabric as an Antibacterial Textile Finish, Fibers And Polymers. 10 (2009) 496-501.
DOI: 10.1007/s12221-009-0496-8
Google Scholar
[8]
K. Kulthong, S. Srisung, K. Boonpavanitchakul, W. Kangwansupamonkon, R. Maniratanachote, Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat, Particle and Fibre Toxicology. 7 (2010).
DOI: 10.1186/1743-8977-7-8
Google Scholar
[9]
K. S. Woo, K. S. Kim, K. Lamsal, Y. J. Kim, S. B. Kim, M. Jung, S. J. Sim, H. S. Kim, S.J. Chang, J. K. Kim, Y. S. Lee, An In Vitro Study Of The Antifungal Effect Of Silver Nanoparticles On Oak Wilt Pathogen Raffaelea Sp., J. Microbiol. Biotechnol. 19 (2009).
DOI: 10.5423/rpd.2011.17.2.136
Google Scholar
[10]
S. W. Kim, J. H. Jung, K. Lamsal, Y. S. Kim, J. S. Min, Y. S. Lee, Antifungal Effects Of Silver Nanoparticles Against Various Plant Pathogenic Fungi, Mycobiology. 40 (2012) 53-58.
DOI: 10.5941/myco.2012.40.1.053
Google Scholar
[11]
Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Negligible Particle-Specific Antibacterial Activity Of Silver Nanoparticles, Nano Lett. 12 (2012) 4271−4275.
DOI: 10.1021/nl301934w
Google Scholar
[12]
S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy, RSC Adv. 4 (2014) 3974 -3983.
DOI: 10.1039/c3ra44507k
Google Scholar
[13]
A. H. L. Machado, O. Pandoli, L. S. M. Miranda, R. O. M. A. de Souza, Micro Reatores: Novas Oportunidades em Síntese Química, Revista Virtual Quim., 6 (2014) 1076-1085.
Google Scholar
[14]
A. B. Vermelho, A. F. Pereira, R. R. R. Coelho, Práticas de Microbiologia 1ª ed. Rio de Janeiro Editora Guanabara Kogran (Grupo Gen) (2006).
Google Scholar
[15]
Flow chemistry practical course, 2nd edition, (2011) Informaion on www. futurechemistry. com.
Google Scholar
[16]
D. Rucha, V. Mankad, S. K. Gupta, P. K. Jha, Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment, Nanoscience and Nanotechnology Letters, 4 (2012) 30-35.
DOI: 10.1166/nnl.2012.1278
Google Scholar
[17]
R. G. da Silva, A. L. Beraldo, M. B. Ferreira, R. C. Bonugli-Santos, L. D. Sette, Occurrence of filamentous fungi on Dendrocalamus Giganteus in Brazil, VIII World Bamboo Congress Proceedings , information on http: /www. eeob. iastate. edu/research/bamboo/index. html.
Google Scholar