Synthesis of Silver Nanoparticles with Potential Antifungical Activity for Bamboo Treatment

Article Preview

Abstract:

To increase the durability of bamboo it is important to find an easy method to fill the micro and meso structure of the biological matrix using a nanostructural material with an anti-fungical activity. A colloidal solution of silver nanoparticle (Ag-NPs) is a dispersion of metal nanoparticle in water with a diameter between 5-100 nm. Even if the biological mechanism is not completly understood yet, Ag-NPs show a satisfactory bactericidal and antifungical activity. We present a simple and rapid production of Ag-NPs made by a sol-gel synthesis in flow mode by means of microreactor tecnology through a chemical reduction of AgNO3 with NaBH4 in presence of two different organic ligands: sodium/potassium tartrate and trisodium citrate. The synthesis of Ag-NPs in continuous flow compared to the batch technique allowed to reduce the time of synthesis, facilitating the reproducibility of the process and consequently obtaining NPs with more uniform physical and chemical characteristics. The microorganisms of the genus Aspergillus were used for the microbiological tests. The effect of different Ag-NPs on microbial growth was observed daily. In particular, it was shown that the response of the fungus is inversely proportional to the size of the nanoparticles, cell growth is disrupt depending on the proportion between silver and organic ligand and microbialstatic effect, especially in relation to sporulation stage was also observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-91

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Ghavami, Bamboo as reinforcement in structural concrete elements, Cement & Concrete Composites. 27 (2005) 637–649.

DOI: 10.1016/j.cemconcomp.2004.06.002

Google Scholar

[2] Information on http: /www. wood-database. com/lumber-identification/monocots/bamboo.

Google Scholar

[3] L. Zou, H. Jin, W.Y. Lu, X. Li, Nanoscale structural and mechanical characterization of the cell wall of bamboo fibbers, Materials Science and Engineering C. 29 (2009) 1375–1379.

DOI: 10.1016/j.msec.2008.11.007

Google Scholar

[4] G. Zhang , Y. Liu, H. Morikawa, Y. Chen, Application of ZnO nanoparticles to enhance
the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric, Cellulose. 20 (2013) 1877–1884.

DOI: 10.1007/s10570-013-9979-2

Google Scholar

[5] M. D. Teli, J. Sheikh, Study Of Grafted Silver Nanoparticle Containing Durable Antibacterial Bamboo Rayon, Cellulose Chem. Technol. 47 (2013) 69-75.

Google Scholar

[6] H. Mucha, D. Hoter, M. Swerev, Antimicrobial Finishes and Modifications, Eds. Melliand International, (2002) cap 8 pp.148-151.

Google Scholar

[7] F. Z. Hang, X. Wu, Y. Chen, A. H. Lin, Application of Silver Nanoparticles to Cotton Fabric as an Antibacterial Textile Finish, Fibers And Polymers. 10 (2009) 496-501.

DOI: 10.1007/s12221-009-0496-8

Google Scholar

[8] K. Kulthong, S. Srisung, K. Boonpavanitchakul, W. Kangwansupamonkon, R. Maniratanachote, Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat, Particle and Fibre Toxicology. 7 (2010).

DOI: 10.1186/1743-8977-7-8

Google Scholar

[9] K. S. Woo, K. S. Kim, K. Lamsal, Y. J. Kim, S. B. Kim, M. Jung, S. J. Sim, H. S. Kim, S.J. Chang, J. K. Kim, Y. S. Lee, An In Vitro Study Of The Antifungal Effect Of Silver Nanoparticles On Oak Wilt Pathogen Raffaelea Sp., J. Microbiol. Biotechnol. 19 (2009).

DOI: 10.5423/rpd.2011.17.2.136

Google Scholar

[10] S. W. Kim, J. H. Jung, K. Lamsal, Y. S. Kim, J. S. Min, Y. S. Lee, Antifungal Effects Of Silver Nanoparticles Against Various Plant Pathogenic Fungi, Mycobiology. 40 (2012) 53-58.

DOI: 10.5941/myco.2012.40.1.053

Google Scholar

[11] Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Negligible Particle-Specific Antibacterial Activity Of Silver Nanoparticles, Nano Lett. 12 (2012) 4271−4275.

DOI: 10.1021/nl301934w

Google Scholar

[12] S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy, RSC Adv. 4 (2014) 3974 -3983.

DOI: 10.1039/c3ra44507k

Google Scholar

[13] A. H. L. Machado, O. Pandoli, L. S. M. Miranda, R. O. M. A. de Souza, Micro Reatores: Novas Oportunidades em Síntese Química, Revista Virtual Quim., 6 (2014) 1076-1085.

Google Scholar

[14] A. B. Vermelho, A. F. Pereira, R. R. R. Coelho, Práticas de Microbiologia 1ª ed. Rio de Janeiro Editora Guanabara Kogran (Grupo Gen) (2006).

Google Scholar

[15] Flow chemistry practical course, 2nd edition, (2011) Informaion on www. futurechemistry. com.

Google Scholar

[16] D. Rucha, V. Mankad, S. K. Gupta, P. K. Jha, Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment, Nanoscience and Nanotechnology Letters, 4 (2012) 30-35.

DOI: 10.1166/nnl.2012.1278

Google Scholar

[17] R. G. da Silva, A. L. Beraldo, M. B. Ferreira, R. C. Bonugli-Santos, L. D. Sette, Occurrence of filamentous fungi on Dendrocalamus Giganteus in Brazil, VIII World Bamboo Congress Proceedings , information on http: /www. eeob. iastate. edu/research/bamboo/index. html.

Google Scholar