Effect of Fiber and Starch Incorporation in Biodegradation of PLA-TPS-Cotton Composites

Article Preview

Abstract:

Poly (lactic acid) (PLA) is a biodegradable and high-cost polymer which is nevertheless replacing the use of commodities in applications like packaging films, and is widely discarded in the environment. In this work, PLA was homogenized in a K-Mixer with different proportions of thermoplastic starch (TPS), a material with lower cost, and these mixtures were reinforced with natural cotton fibers, seeking to increase the tensile strength without compromising biodegradation. To evaluate the degradation behavior of PLA-TPS-cotton composites, tests were performed to measure the contact angle as well as the effect of hydrolysis and degradation in simulated soil. All the materials showed peak mass retention when removed from the water at 28 days and from the simulated soil at 14 days. The results showed that varying the content of TPS (0, 3 and 5%) caused increased water absorption and rate of degradation, but the fiber content (0, 10 and 20%) can distinguish the influence observed by incorporation of starch. The samples immersed in water presented retention values near those of the PLA matrix itself only for the ratio between fiber and TPS of 2:1 in mass percentage, showing the increased stability of the composite in contact with water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-62

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J-M. Raquez, Y. Habibi, M. Murariu, P. Dubois. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science. 2013; 38(10-11): 1504-42.

DOI: 10.1016/j.progpolymsci.2013.05.014

Google Scholar

[2] F. Harnnecker, D.S. Rosa, DM Lenz. Biodegradable Polyester-Based Blend Reinforced with Curaua Fiber: Thermal, Mechanical and Biodegradation Behaviour. Journal of Polymers and the Environment. 2012; 20(1): 237-44.

DOI: 10.1007/s10924-011-0382-5

Google Scholar

[3] I. Armentano, N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science. 2013; 38(10-11): 1720-47.

DOI: 10.1016/j.progpolymsci.2013.05.010

Google Scholar

[4] American National Standart. ASTM D-6400 – Standard Specification for Compostable Plastics. West Conshohocken. 3p. (2009).

Google Scholar

[5] R. Datta, M. Henry. Lactic acid: recent advances in products, processes and technologies - a review. Journal of Chemical Technology and Biotechnology. 2006; 81(7): 1119-29.

DOI: 10.1002/jctb.1486

Google Scholar

[6] A.K. Lau, W.W. Cheuk, K.V. Lo. Degradation of greenhouse twines derived from natural fibers and biodegradable polymer during composting. Journal of Environmental Management. 2009; 90(1): 668-71.

DOI: 10.1016/j.jenvman.2008.03.001

Google Scholar

[7] T.A. Hottle, M.M. Bilec, A.E. Landis. Sustainability assessments of bio-based polymers. Polymer Degradation and Stability. 2013; 98(9): 1898-907.

DOI: 10.1016/j.polymdegradstab.2013.06.016

Google Scholar

[8] E.M. Teixeira, A.A.S. Curvelo, A.C. Correa, J.M. Marconcini, G.M. Glenn, L.H.C. Mattoso. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products. 2012; 37(1): 61-8.

DOI: 10.1016/j.indcrop.2011.11.036

Google Scholar

[9] G. Li, P. Sarazin, W.J. Orts, S.H. Imam, B.D. Favis. Biodegradation of Thermoplastic Starch and its Blends with Poly(lactic acid) and Polyethylene: Influence of Morphology. Macromolecular Chemistry and Physics. 2011; 212(11): 1147-54.

DOI: 10.1002/macp.201100090

Google Scholar

[10] Y-B. Luo, X-L. Wang, Y-Z. Wang. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polymer Degradation and Stability. 2012; 97(5): 721-8.

DOI: 10.1016/j.polymdegradstab.2012.02.011

Google Scholar

[11] I. Castilla-Cortazar, J. Mas-Estelles, J.M. Meseguer-Duenas, J.L.E. Ivirico, B. Mari, A. Vidaurre. Hydrolytic and enzymatic degradation of a poly(epsilon-caprolactone) network. Polymer Degradation and Stability. 2012; 97(8): 1241-8.

DOI: 10.1016/j.polymdegradstab.2012.05.038

Google Scholar

[12] A.M. Gallardo-Moreno, N-P.M. Luisa, V. Rodriguez , J.M. Bruque, G-M.M. Luisa. Insights into bacterial contact angles: Difficulties in defining hydrophobicity and surface Gibbs energy. Colloids and Surfaces B-Biointerfaces. 2011; 88(1): 373-80.

DOI: 10.1016/j.colsurfb.2011.07.016

Google Scholar

[13] R. Jeziorska, A. Szadkowska, B. Swierz-Motysia, J. Kozakiewicz. Effect of core-shell, polymeric nanofiller on the structure and properties of polylactide and thermoplastic corn starch blend. Polimery. 2012; 57(5): 354-63.

DOI: 10.14314/polimery.2012.354

Google Scholar

[14] C.A. Rodrigues, D. Octaviano and D.S. Rosa. O efeito do envelhecimento térmico em um sistema ternário PLA, TPS e MMT. In: Congresso Brasileiro de Polímeros, 12, Florianópolis. (2014).

Google Scholar

[15] J. Sahari, S.M. Sapuan. Natural fibre reinforced biodegradable polymer composites. Reviews on Advanced Materials Science. 2012; 30(2): 166-74.

Google Scholar

[16] Department of Health and Ageing Office of the Gene Technology Regulator. The Biology of Gossypium hirsutum L. and Gossypium barbadense L. (cotton), version 2. Australia. (2008).

Google Scholar

[17] C. Way, D.Y. Wu, D. Cram, K. Dean, E. Palombo. Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres. Journal of Polymers and the Environment. 2013; 21(1): 54-70.

DOI: 10.1007/s10924-012-0462-1

Google Scholar

[18] M.C.A.M. Leite, C.R.G. Furtado, L.O. Couto, F.L.B.O. Oliveira, T.R. Correia. Evaluation of Biodegradation Poly(epsilon-Caprolactone)/Green Coconut Fiber. Polimeros-Ciencia E Tecnologia. 2010; 20: 339-44.

Google Scholar

[19] T. Stauner, I.B. Silva, O.A. El Seoud, E. Frollini, D.F.S. Petri. Cellulose loading and water sorption value as important parameters for the enzymatic hydrolysis of cellulose. Cellulose. 2013; 20(3): 1109-19.

DOI: 10.1007/s10570-013-9904-8

Google Scholar

[20] F.M. Fowkes. Calculation of work of adhesion by pair potential summation. Journal of Colloid and Interface Science. 1968; 28(3-4): 493.

DOI: 10.1016/0021-9797(68)90082-9

Google Scholar

[21] A. Nakayama, N. Kawasaki, Y. Maeda, I. Arvanitoyannis, S. Aiba, N. Yamamoto. Study of biodegradability of poly(delta-valerolactone-co-L-lactide)s. Journal of Applied Polymer Science. 1997; 66(4): 741-8.

DOI: 10.1002/(sici)1097-4628(19971024)66:4<741::aid-app14>3.0.co;2-u

Google Scholar

[22] S. Chitrattha, T. Phaechamud. Modifying Poly(L-lactic acid) Matrix Film Properties with High Loaded Poly(ethylene glycol). Materials Science and Technology Vii. 2013; 545: 57-62.

DOI: 10.4028/www.scientific.net/kem.545.57

Google Scholar

[23] J.R.N. Macedo and D.S. Rosa. Composites PLA-Starch-Cotton with high natural fiber content. XIV ENEMET - 69 Congresso Anual da ABM. Santo André, Brazil. (2014).

Google Scholar

[24] N. Subhi, A.R.D. Verliefde, V. Chen, P. Le-Clech. Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis. Journal of Membrane Science. 2012; 403: 32-40.

DOI: 10.1016/j.memsci.2012.02.007

Google Scholar

[25] D.S. Rosa and R.P. Pantano Filho. Bioderadação um ensaio com polímeros. 1. ed. Itatiba, São Paulo, Brazil. Moara Editora. 2003; cap. 5: 51-59.

Google Scholar

[26] C.R. Li, S.X. Shu, R. Chen, B.Y. Chen, W.J. Dong. Functionalization of electrospun nanofibers of natural cotton cellulose by cerium dioxide nanoparticles for ultraviolet protection. Journal of Applied Polymer Science. 2013; 130(3): 1524-9.

DOI: 10.1002/app.39264

Google Scholar

[27] H. Pranamuda, A. Tsuchii, Y. Tokiwa. Poly (L-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromolecular Bioscience. 2001; 1(1): 25-9.

DOI: 10.1002/1616-5195(200101)1:1<25::aid-mabi25>3.0.co;2-3

Google Scholar

[28] G. Kale, T. Kijchavengkul, R. Auras, M. Rubino, S.E. Selke, S.P. Singh. Compostability of bioplastic packaging materials: An overview. Macromolecular Bioscience. 2007; 7(3): 255-77.

DOI: 10.1002/mabi.200600168

Google Scholar

[29] E.N. Pires, C. Merlini, H.A. Al-Qureshi, G.V. Salmoria, G.M.O. Barra. The Influence of Alkaline Treatment on Jute Fiber- Reinforced Epoxy Resin Composite. Polimeros-Ciencia E Tecnologia. 2012; 22(4): 339-44.

Google Scholar

[30] A. Sirvaitiene, V. Jankauskaite, P. Bekampiene, A. Kondratas. Influence of Natural Fibre Treatment on Interfacial Adhesion in Biocomposites. Fibres & Textiles in Eastern Europe. 2013; 21(4): 123-9.

Google Scholar

[31] J.R.N. Macedo, V.N. Carmona and D.S. Rosa. Estudo da superfície de compósitos PLA-Amido-Algodão para a degradação do compósito. SLAP - XIV Latin American Symposium on Polymers. Santo André, Brazil. (2014).

Google Scholar