[1]
J-M. Raquez, Y. Habibi, M. Murariu, P. Dubois. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science. 2013; 38(10-11): 1504-42.
DOI: 10.1016/j.progpolymsci.2013.05.014
Google Scholar
[2]
F. Harnnecker, D.S. Rosa, DM Lenz. Biodegradable Polyester-Based Blend Reinforced with Curaua Fiber: Thermal, Mechanical and Biodegradation Behaviour. Journal of Polymers and the Environment. 2012; 20(1): 237-44.
DOI: 10.1007/s10924-011-0382-5
Google Scholar
[3]
I. Armentano, N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science. 2013; 38(10-11): 1720-47.
DOI: 10.1016/j.progpolymsci.2013.05.010
Google Scholar
[4]
American National Standart. ASTM D-6400 – Standard Specification for Compostable Plastics. West Conshohocken. 3p. (2009).
Google Scholar
[5]
R. Datta, M. Henry. Lactic acid: recent advances in products, processes and technologies - a review. Journal of Chemical Technology and Biotechnology. 2006; 81(7): 1119-29.
DOI: 10.1002/jctb.1486
Google Scholar
[6]
A.K. Lau, W.W. Cheuk, K.V. Lo. Degradation of greenhouse twines derived from natural fibers and biodegradable polymer during composting. Journal of Environmental Management. 2009; 90(1): 668-71.
DOI: 10.1016/j.jenvman.2008.03.001
Google Scholar
[7]
T.A. Hottle, M.M. Bilec, A.E. Landis. Sustainability assessments of bio-based polymers. Polymer Degradation and Stability. 2013; 98(9): 1898-907.
DOI: 10.1016/j.polymdegradstab.2013.06.016
Google Scholar
[8]
E.M. Teixeira, A.A.S. Curvelo, A.C. Correa, J.M. Marconcini, G.M. Glenn, L.H.C. Mattoso. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products. 2012; 37(1): 61-8.
DOI: 10.1016/j.indcrop.2011.11.036
Google Scholar
[9]
G. Li, P. Sarazin, W.J. Orts, S.H. Imam, B.D. Favis. Biodegradation of Thermoplastic Starch and its Blends with Poly(lactic acid) and Polyethylene: Influence of Morphology. Macromolecular Chemistry and Physics. 2011; 212(11): 1147-54.
DOI: 10.1002/macp.201100090
Google Scholar
[10]
Y-B. Luo, X-L. Wang, Y-Z. Wang. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polymer Degradation and Stability. 2012; 97(5): 721-8.
DOI: 10.1016/j.polymdegradstab.2012.02.011
Google Scholar
[11]
I. Castilla-Cortazar, J. Mas-Estelles, J.M. Meseguer-Duenas, J.L.E. Ivirico, B. Mari, A. Vidaurre. Hydrolytic and enzymatic degradation of a poly(epsilon-caprolactone) network. Polymer Degradation and Stability. 2012; 97(8): 1241-8.
DOI: 10.1016/j.polymdegradstab.2012.05.038
Google Scholar
[12]
A.M. Gallardo-Moreno, N-P.M. Luisa, V. Rodriguez , J.M. Bruque, G-M.M. Luisa. Insights into bacterial contact angles: Difficulties in defining hydrophobicity and surface Gibbs energy. Colloids and Surfaces B-Biointerfaces. 2011; 88(1): 373-80.
DOI: 10.1016/j.colsurfb.2011.07.016
Google Scholar
[13]
R. Jeziorska, A. Szadkowska, B. Swierz-Motysia, J. Kozakiewicz. Effect of core-shell, polymeric nanofiller on the structure and properties of polylactide and thermoplastic corn starch blend. Polimery. 2012; 57(5): 354-63.
DOI: 10.14314/polimery.2012.354
Google Scholar
[14]
C.A. Rodrigues, D. Octaviano and D.S. Rosa. O efeito do envelhecimento térmico em um sistema ternário PLA, TPS e MMT. In: Congresso Brasileiro de Polímeros, 12, Florianópolis. (2014).
Google Scholar
[15]
J. Sahari, S.M. Sapuan. Natural fibre reinforced biodegradable polymer composites. Reviews on Advanced Materials Science. 2012; 30(2): 166-74.
Google Scholar
[16]
Department of Health and Ageing Office of the Gene Technology Regulator. The Biology of Gossypium hirsutum L. and Gossypium barbadense L. (cotton), version 2. Australia. (2008).
Google Scholar
[17]
C. Way, D.Y. Wu, D. Cram, K. Dean, E. Palombo. Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres. Journal of Polymers and the Environment. 2013; 21(1): 54-70.
DOI: 10.1007/s10924-012-0462-1
Google Scholar
[18]
M.C.A.M. Leite, C.R.G. Furtado, L.O. Couto, F.L.B.O. Oliveira, T.R. Correia. Evaluation of Biodegradation Poly(epsilon-Caprolactone)/Green Coconut Fiber. Polimeros-Ciencia E Tecnologia. 2010; 20: 339-44.
Google Scholar
[19]
T. Stauner, I.B. Silva, O.A. El Seoud, E. Frollini, D.F.S. Petri. Cellulose loading and water sorption value as important parameters for the enzymatic hydrolysis of cellulose. Cellulose. 2013; 20(3): 1109-19.
DOI: 10.1007/s10570-013-9904-8
Google Scholar
[20]
F.M. Fowkes. Calculation of work of adhesion by pair potential summation. Journal of Colloid and Interface Science. 1968; 28(3-4): 493.
DOI: 10.1016/0021-9797(68)90082-9
Google Scholar
[21]
A. Nakayama, N. Kawasaki, Y. Maeda, I. Arvanitoyannis, S. Aiba, N. Yamamoto. Study of biodegradability of poly(delta-valerolactone-co-L-lactide)s. Journal of Applied Polymer Science. 1997; 66(4): 741-8.
DOI: 10.1002/(sici)1097-4628(19971024)66:4<741::aid-app14>3.0.co;2-u
Google Scholar
[22]
S. Chitrattha, T. Phaechamud. Modifying Poly(L-lactic acid) Matrix Film Properties with High Loaded Poly(ethylene glycol). Materials Science and Technology Vii. 2013; 545: 57-62.
DOI: 10.4028/www.scientific.net/kem.545.57
Google Scholar
[23]
J.R.N. Macedo and D.S. Rosa. Composites PLA-Starch-Cotton with high natural fiber content. XIV ENEMET - 69 Congresso Anual da ABM. Santo André, Brazil. (2014).
Google Scholar
[24]
N. Subhi, A.R.D. Verliefde, V. Chen, P. Le-Clech. Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis. Journal of Membrane Science. 2012; 403: 32-40.
DOI: 10.1016/j.memsci.2012.02.007
Google Scholar
[25]
D.S. Rosa and R.P. Pantano Filho. Bioderadação um ensaio com polímeros. 1. ed. Itatiba, São Paulo, Brazil. Moara Editora. 2003; cap. 5: 51-59.
Google Scholar
[26]
C.R. Li, S.X. Shu, R. Chen, B.Y. Chen, W.J. Dong. Functionalization of electrospun nanofibers of natural cotton cellulose by cerium dioxide nanoparticles for ultraviolet protection. Journal of Applied Polymer Science. 2013; 130(3): 1524-9.
DOI: 10.1002/app.39264
Google Scholar
[27]
H. Pranamuda, A. Tsuchii, Y. Tokiwa. Poly (L-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromolecular Bioscience. 2001; 1(1): 25-9.
DOI: 10.1002/1616-5195(200101)1:1<25::aid-mabi25>3.0.co;2-3
Google Scholar
[28]
G. Kale, T. Kijchavengkul, R. Auras, M. Rubino, S.E. Selke, S.P. Singh. Compostability of bioplastic packaging materials: An overview. Macromolecular Bioscience. 2007; 7(3): 255-77.
DOI: 10.1002/mabi.200600168
Google Scholar
[29]
E.N. Pires, C. Merlini, H.A. Al-Qureshi, G.V. Salmoria, G.M.O. Barra. The Influence of Alkaline Treatment on Jute Fiber- Reinforced Epoxy Resin Composite. Polimeros-Ciencia E Tecnologia. 2012; 22(4): 339-44.
Google Scholar
[30]
A. Sirvaitiene, V. Jankauskaite, P. Bekampiene, A. Kondratas. Influence of Natural Fibre Treatment on Interfacial Adhesion in Biocomposites. Fibres & Textiles in Eastern Europe. 2013; 21(4): 123-9.
Google Scholar
[31]
J.R.N. Macedo, V.N. Carmona and D.S. Rosa. Estudo da superfície de compósitos PLA-Amido-Algodão para a degradação do compósito. SLAP - XIV Latin American Symposium on Polymers. Santo André, Brazil. (2014).
Google Scholar