Preparation of Polypropylene Composites with High Levels of Coir Short Fiber for Use in Products by Injection

Article Preview

Abstract:

The main objective of this investigation was to study the properties of composites of polypropylene (PP) containing different proportions (20, 40 and 60% wt%) of coir short fiber (natural vegetable fiber) without treatment of fibers, for use in products by injection with applications in the automotive industries, construction and other segments. Samples were prepared in a only stage using a high intensity thermokinetic mixer (K-Mixer). Additives were used in the mass fraction of 3 wt% compatibilizer (PP-g-MA), 2.2 wt% processing additive and 0.12 wt% thermal antioxidant. The composites were characterized by tensile test according to ASTM D638-10. The surface properties of the polymeric matrix with additives were studied by determining the contact angle (CA) in a sessile drop tensiometer and the carbonyl index (CI) by Fourier-transform infrared spectroscopy (FTIR). Thermal properties of the PP and the composition were evaluated by thermogravimetric test, and the interface of the fiber and the matrix in the composites were evaluated using images from scanning electron microscopy (SEM). The CA analysis showed that the PP matrix with additives has become less hydrophobic and the FTIR and the CI that there was a better stabilization of the PP with additives. There was an increase in thermal stability of the composites for all fiber content, which was up to 15 °C above PP for coir fiber composites. In the Young's modulus values showed that the inclusion of fibers reinforced the polymeric matrix and increased the stiffness of the composites, especially in composites containing 60% (wt%) in which the values were ~1.7 times greater than the polypropylene. Images of micrographs showed the interaction of the fiber in the matrix and that despite the hydrophilic character of the fibers and hydrophobic character of the PP, the composites showed non-homogeneous interfaces. These findings confirm the feasibility of using high level of coir fiber in polypropylene composites even without pretreatment of the fibers and the preparation of samples by injection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-38

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.L. Leao; R.M.F. Teixeira; P.C. Ferrao. Production of reinforced composites with natural fibers for industrial applications - Extrusion and injection WPC. Molecular Crystals and Liquid Crystals. 2008; 484: 523-32.

DOI: 10.1080/15421400801904393

Google Scholar

[2] A.L. Leao; R.M. Rowell; N. Tavares. Applications of natural fibers in the Brazil automotive industry - Thermoforming and injection-molding processes1997.

Google Scholar

[3] L. Sobczak; O. Brüggemann; R. Putz. Polyolefin composites with natural fibers and wood modification of the fiber/filler–matrix interaction. Journal of Applied Polymer Science. (2012).

DOI: 10.1002/app.36935

Google Scholar

[4] D.B. Dittenber; H.V.S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012; 43(8): 1419-29.

DOI: 10.1016/j.compositesa.2011.11.019

Google Scholar

[5] V.L.P. Salazar; A.L. Leão; D.S. Rosa; J.G.C. Gomez; R.C.P. Alli. Biodegradation of Coir and Sisal Applied in the Automotive Industry. J Polym Environ. 2011; 19(3): 677-88.

DOI: 10.1007/s10924-011-0315-3

Google Scholar

[6] M. Boopalan; M. Umapathy; P. Jenyfer. A Comparative Study on the Mechanical Properties of Jute and Sisal Fiber Reinforced Polymer Composites. Silicon. 2012: 1-5.

DOI: 10.1007/s12633-012-9110-6

Google Scholar

[7] C. Baillie. Green Composites: Polymer Composites and the Environment: Taylor & Francis; (2005).

Google Scholar

[8] S. Mukhopadhyay; R. Srikanta. Effect of ageing of sisal fibres on properties of sisal - Polypropylene composites. Polymer Degradation and Stability. 2008; 93(11): 2048-51.

DOI: 10.1016/j.polymdegradstab.2008.02.018

Google Scholar

[9] M. Ardanuy; M. Antunes; J.I. Velasco. Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams. Waste Management. 2012; 32(2): 256-63.

DOI: 10.1016/j.wasman.2011.09.022

Google Scholar

[10] K. Jayaraman. Manufacturing sisal-polypropylene composites with minimum fibre degradation. Composites Science and Technology. 2003; 63(3-4): 367-74.

DOI: 10.1016/s0266-3538(02)00217-8

Google Scholar

[11] U.K. Dwivedi; N. Chand. Influence of MA-g-PP on abrasive wear behaviour of chopped sisal fibre reinforced polypropylene composites. Journal of Materials Processing Technology. 2009; 209(12-13): 5371-5.

DOI: 10.1016/j.jmatprotec.2009.04.008

Google Scholar

[12] A.K. Bledzki; A.A. Mamun; J. Volk. Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology. 2010; 70(5): 840-6.

DOI: 10.1016/j.compscitech.2010.01.022

Google Scholar

[13] J.L. Leblanc; C.R.G. Furtado; M.C.A. M. Leite; L.L.Y. Visconte; M.H. Ishizaki. Investigating polypropylene-green coconut fiber composites in the molten and solid states through various techniques. Journal of Applied Polymer Science. 2006; 102(2): 1922-36.

DOI: 10.1002/app.24239

Google Scholar

[14] U. Hujuri; S.K. Chattopadhay; R. Uppaluri; A.K. Ghoshal. Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. Journal of Applied Polymer Science. 2008; 107(3): 1507-16.

DOI: 10.1002/app.27156

Google Scholar

[15] C.M.C. Bonelli; A. Elzubair; J.C.M. Suarez; E.B. Mano. Comportamento térmico, mecânico e morfológico de compósitos de polietileno de alta densidade reciclado com fibra de piaçava. Polímeros. 2005; 15: 256-60.

DOI: 10.1590/s0104-14282005000400009

Google Scholar

[16] D.R. Mulinari; H.J.C. Voorwald; M.O.H. Cioffi; C.A.A. Lima; C.A.P.R. Baptista; G.J.M. Rocha. Composite materials obtained from textile fiber residue. J Compos Mater. 2011; 45(5): 543-7.

DOI: 10.1177/0021998310376098

Google Scholar

[17] F. Harnnecker; D.S. Rosa; D. Lenz. Biodegradable Polyester-Based Blend Reinforced with Curauá Fiber: Thermal, Mechanical and Biodegradation Behaviour. J Polym Environ. 2012; 20(1): 237-44.

DOI: 10.1007/s10924-011-0382-5

Google Scholar

[18] S.M. Luz; A. Caldeira-Pires; P.M.C. Ferrão. Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components. Resources, Conservation and Recycling. 2010; 54(12): 1135-44.

DOI: 10.1016/j.resconrec.2010.03.009

Google Scholar

[19] P. Wambua; J. Ivens; I. Verpoest. Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology. 2003; 63(9): 1259-64.

DOI: 10.1016/s0266-3538(03)00096-4

Google Scholar

[20] S.V. Joshi; L.T. Drzal; A.K. Mohanty; S. Arora. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing. 2004; 35(3): 371-6.

DOI: 10.1016/j.compositesa.2003.09.016

Google Scholar

[21] Information on http: /www. sistemasdeproducao. cnptia. embrapa. br/FontesHTML/Coco/ACultu radoCoqueiro/importancia. htm.

Google Scholar

[22] S.A.S. Goulart; T.A. Oliveira; A. Teixeira; P.C. Miléo; D.R. Mulinari. Mechanical Behaviour of Polypropylene Reinforced Palm Fibers Composites. Procedia Engineering. 2011; 10(0): 2034-9.

DOI: 10.1016/j.proeng.2011.04.337

Google Scholar

[23] E.F. Cerqueira; C.A.R.P. Baptista; D.R. Mulinari. Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Engineering. 2011; 10(0): 2046-51.

DOI: 10.1016/j.proeng.2011.04.339

Google Scholar

[24] A.K. Gupta; M. Biswal; S. Mohanty; S.K. Nayak. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites. Advances in Mechanical Engineering. (2012).

DOI: 10.1155/2012/418031

Google Scholar

[25] L. Sobczak; R. Welser; O. Brüggemann; A. Haider. A. Polypropylene (PP)-based wood polymer composites: Performance of five commercial maleic anhydride grafted PP coupling agents. Journal of Thermoplastic Composite Materials. (2012).

DOI: 10.1177/0892705712447806

Google Scholar

[26] M.T.B. Pimenta; A.J.F. Carvalho; F. Vilaseca; J. Girones; J.P. Lopez; P. Mutje; A.A.S. Curvelo. Soda-Treated Sisal/Polypropylene Composites. J Polym Environ. 2008; 16(1): 35-9.

DOI: 10.1007/s10924-008-0080-0

Google Scholar

[27] E.F. Santos; M. Moresco; S.M. Rosa; S. Nachtigall. Extrusion of PP composites with short coir fibers: effect of temperature and coupling agents. Polímeros. 2010; 20(3): 215-20.

Google Scholar

[28] R.D.O. Polkowski; J.D.V. Barbosa. Caracterização de compósitos de PP com fibras curtas de sisal: Efeito do processo de corte das fibras. 12° Congresso Brasileiro de Polímeros-12°CBPol. Florianópolis, SC, Brasil2013.

DOI: 10.11606/d.88.2015.tde-18082015-175552

Google Scholar

[29] P.J. Herrera-Franco; A. Valadez-González. A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering. 2005; 36(8): 597-608.

DOI: 10.1016/j.compositesb.2005.04.001

Google Scholar

[30] B. Mano; J. Araújo; M. Spinacé; M.A. De Paoli. Polyolefin composites with curaua fibres: Effect of the processing conditions on mechanical properties, morphology and fibres dimensions. Composites Science and Technology. 2010; 70(1): 29-35.

DOI: 10.1016/j.compscitech.2009.09.002

Google Scholar

[31] D638-10 D. Standard test method for tensile properties of plastics. (2011).

Google Scholar

[32] A.L. Catto; B.V. Stefani; V.F. Ribeiro; R.M.C. Santana. Influence of coupling agent in compatibility of post-consumer HDPE in thermoplastic composites reinforced with eucalyptus fiber. Materials Research. (2014).

DOI: 10.1590/s1516-14392014005000036

Google Scholar

[33] C. Albano; J. Reyes; M. Ichazo; J. Gonzalez; M. Brito; D. Moronta. Analysis of the mechanical, thermal and morphological behaviour of polypropylene compounds with sisal fibre and wood flour, irradiated with gamma rays. Polymer Degradation and Stability. 2002; 76(2): 191-203.

DOI: 10.1016/s0141-3910(02)00014-9

Google Scholar

[34] C.A. Cáceres; S.V. Canevarolo. Degradação do polipropileno durante a extrusão ea geração de compostos orgânicos voláteis. Polímeros: Ciência e Tecnologia. 2009; 19(1): 79-84.

DOI: 10.1590/s0104-14282009000100017

Google Scholar

[35] X. Wang; W. Yu; Q. Nie; Y. Guo; J. Du. A real-time study on the evolution of the degradation of polypropylene during mixing process. Journal of Applied Polymer Science. 2011; 121(2): 1220-43.

DOI: 10.1002/app.33795

Google Scholar

[36] M.A. De Paoli. Degradação e estabilização de polímeros: Artliber; (2009).

Google Scholar

[37] C. de Carvalho; A. Silveira; D.S. Rosa. A study of the controlled degradation of polypropylene containing pro-oxidant agents. SpringerPlus. 2013; 2(1): 1-11.

DOI: 10.1186/2193-1801-2-623

Google Scholar

[38] A.C. Babetto; S.V. Canevarolo. Efeito do tipo de elemento de rosca na degradação de polipropileno durante múltiplas extrusões. Polímeros: ciência e tecnologia. 2000; 10(2): 90-9.

DOI: 10.1590/s0104-14282000000200011

Google Scholar

[39] C.R. Passatore. Dissertação de mestrado em nanociências e materiais avançados na Universidade Federal do ABC (2014).

Google Scholar

[40] F. Rosário; W.M. Pachekoski; A.P.J. Silveira; S.F. Santos; H. Savastano Jr; S. A. Casarin. Resíduos de sisal como reforço em compósitos de polipropileno virgem e reciclado. Polímeros. 2011; 21(2): 90-7.

DOI: 10.1590/s0104-14282011005000021

Google Scholar

[41] P.V. Joseph; G. Mathew; K. Joseph; G. Groeninckx; S. Thomas. Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos Pt A-Appl Sci Manuf. 2003; 34(3): 275-90.

DOI: 10.1016/s1359-835x(02)00020-9

Google Scholar

[42] A.A. Morandim-Giannetti; J.A.M. Agnelli; B.Z. Lancas; R. Magnabosco; S.A. Casarin; S.H.P. Bettini. Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydrate Polymers. 2012; 87(4): 2563-8.

DOI: 10.1016/j.carbpol.2011.11.041

Google Scholar

[43] P.V. Joseph; K. Joseph; S. Thomas; C.K.S. Pillai; V.S. Prasad; G. Groeninckx; M. Sarkissova. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Pt A-Appl Sci Manuf. 2003; 34(3): 253-66.

DOI: 10.1016/s1359-835x(02)00185-9

Google Scholar

[44] E.F. Santos. Efeito de agentes de acoplamento em compósitos de polipropileno com fibras de coco. (2007).

DOI: 10.1590/s0104-14282010005000036

Google Scholar

[45] R.M. Leão. Tratamento superficial de fibra de coco e aplicação em materiais compósitos como reforço do polipropileno. Dissertação de mestrado em ciências mecânicas. (2012).

DOI: 10.1590/s1517-707620200001.0873

Google Scholar