[1]
A.L. Leao; R.M.F. Teixeira; P.C. Ferrao. Production of reinforced composites with natural fibers for industrial applications - Extrusion and injection WPC. Molecular Crystals and Liquid Crystals. 2008; 484: 523-32.
DOI: 10.1080/15421400801904393
Google Scholar
[2]
A.L. Leao; R.M. Rowell; N. Tavares. Applications of natural fibers in the Brazil automotive industry - Thermoforming and injection-molding processes1997.
Google Scholar
[3]
L. Sobczak; O. Brüggemann; R. Putz. Polyolefin composites with natural fibers and wood modification of the fiber/filler–matrix interaction. Journal of Applied Polymer Science. (2012).
DOI: 10.1002/app.36935
Google Scholar
[4]
D.B. Dittenber; H.V.S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012; 43(8): 1419-29.
DOI: 10.1016/j.compositesa.2011.11.019
Google Scholar
[5]
V.L.P. Salazar; A.L. Leão; D.S. Rosa; J.G.C. Gomez; R.C.P. Alli. Biodegradation of Coir and Sisal Applied in the Automotive Industry. J Polym Environ. 2011; 19(3): 677-88.
DOI: 10.1007/s10924-011-0315-3
Google Scholar
[6]
M. Boopalan; M. Umapathy; P. Jenyfer. A Comparative Study on the Mechanical Properties of Jute and Sisal Fiber Reinforced Polymer Composites. Silicon. 2012: 1-5.
DOI: 10.1007/s12633-012-9110-6
Google Scholar
[7]
C. Baillie. Green Composites: Polymer Composites and the Environment: Taylor & Francis; (2005).
Google Scholar
[8]
S. Mukhopadhyay; R. Srikanta. Effect of ageing of sisal fibres on properties of sisal - Polypropylene composites. Polymer Degradation and Stability. 2008; 93(11): 2048-51.
DOI: 10.1016/j.polymdegradstab.2008.02.018
Google Scholar
[9]
M. Ardanuy; M. Antunes; J.I. Velasco. Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams. Waste Management. 2012; 32(2): 256-63.
DOI: 10.1016/j.wasman.2011.09.022
Google Scholar
[10]
K. Jayaraman. Manufacturing sisal-polypropylene composites with minimum fibre degradation. Composites Science and Technology. 2003; 63(3-4): 367-74.
DOI: 10.1016/s0266-3538(02)00217-8
Google Scholar
[11]
U.K. Dwivedi; N. Chand. Influence of MA-g-PP on abrasive wear behaviour of chopped sisal fibre reinforced polypropylene composites. Journal of Materials Processing Technology. 2009; 209(12-13): 5371-5.
DOI: 10.1016/j.jmatprotec.2009.04.008
Google Scholar
[12]
A.K. Bledzki; A.A. Mamun; J. Volk. Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology. 2010; 70(5): 840-6.
DOI: 10.1016/j.compscitech.2010.01.022
Google Scholar
[13]
J.L. Leblanc; C.R.G. Furtado; M.C.A. M. Leite; L.L.Y. Visconte; M.H. Ishizaki. Investigating polypropylene-green coconut fiber composites in the molten and solid states through various techniques. Journal of Applied Polymer Science. 2006; 102(2): 1922-36.
DOI: 10.1002/app.24239
Google Scholar
[14]
U. Hujuri; S.K. Chattopadhay; R. Uppaluri; A.K. Ghoshal. Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. Journal of Applied Polymer Science. 2008; 107(3): 1507-16.
DOI: 10.1002/app.27156
Google Scholar
[15]
C.M.C. Bonelli; A. Elzubair; J.C.M. Suarez; E.B. Mano. Comportamento térmico, mecânico e morfológico de compósitos de polietileno de alta densidade reciclado com fibra de piaçava. Polímeros. 2005; 15: 256-60.
DOI: 10.1590/s0104-14282005000400009
Google Scholar
[16]
D.R. Mulinari; H.J.C. Voorwald; M.O.H. Cioffi; C.A.A. Lima; C.A.P.R. Baptista; G.J.M. Rocha. Composite materials obtained from textile fiber residue. J Compos Mater. 2011; 45(5): 543-7.
DOI: 10.1177/0021998310376098
Google Scholar
[17]
F. Harnnecker; D.S. Rosa; D. Lenz. Biodegradable Polyester-Based Blend Reinforced with Curauá Fiber: Thermal, Mechanical and Biodegradation Behaviour. J Polym Environ. 2012; 20(1): 237-44.
DOI: 10.1007/s10924-011-0382-5
Google Scholar
[18]
S.M. Luz; A. Caldeira-Pires; P.M.C. Ferrão. Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components. Resources, Conservation and Recycling. 2010; 54(12): 1135-44.
DOI: 10.1016/j.resconrec.2010.03.009
Google Scholar
[19]
P. Wambua; J. Ivens; I. Verpoest. Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology. 2003; 63(9): 1259-64.
DOI: 10.1016/s0266-3538(03)00096-4
Google Scholar
[20]
S.V. Joshi; L.T. Drzal; A.K. Mohanty; S. Arora. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing. 2004; 35(3): 371-6.
DOI: 10.1016/j.compositesa.2003.09.016
Google Scholar
[21]
Information on http: /www. sistemasdeproducao. cnptia. embrapa. br/FontesHTML/Coco/ACultu radoCoqueiro/importancia. htm.
Google Scholar
[22]
S.A.S. Goulart; T.A. Oliveira; A. Teixeira; P.C. Miléo; D.R. Mulinari. Mechanical Behaviour of Polypropylene Reinforced Palm Fibers Composites. Procedia Engineering. 2011; 10(0): 2034-9.
DOI: 10.1016/j.proeng.2011.04.337
Google Scholar
[23]
E.F. Cerqueira; C.A.R.P. Baptista; D.R. Mulinari. Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Engineering. 2011; 10(0): 2046-51.
DOI: 10.1016/j.proeng.2011.04.339
Google Scholar
[24]
A.K. Gupta; M. Biswal; S. Mohanty; S.K. Nayak. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites. Advances in Mechanical Engineering. (2012).
DOI: 10.1155/2012/418031
Google Scholar
[25]
L. Sobczak; R. Welser; O. Brüggemann; A. Haider. A. Polypropylene (PP)-based wood polymer composites: Performance of five commercial maleic anhydride grafted PP coupling agents. Journal of Thermoplastic Composite Materials. (2012).
DOI: 10.1177/0892705712447806
Google Scholar
[26]
M.T.B. Pimenta; A.J.F. Carvalho; F. Vilaseca; J. Girones; J.P. Lopez; P. Mutje; A.A.S. Curvelo. Soda-Treated Sisal/Polypropylene Composites. J Polym Environ. 2008; 16(1): 35-9.
DOI: 10.1007/s10924-008-0080-0
Google Scholar
[27]
E.F. Santos; M. Moresco; S.M. Rosa; S. Nachtigall. Extrusion of PP composites with short coir fibers: effect of temperature and coupling agents. Polímeros. 2010; 20(3): 215-20.
Google Scholar
[28]
R.D.O. Polkowski; J.D.V. Barbosa. Caracterização de compósitos de PP com fibras curtas de sisal: Efeito do processo de corte das fibras. 12° Congresso Brasileiro de Polímeros-12°CBPol. Florianópolis, SC, Brasil2013.
DOI: 10.11606/d.88.2015.tde-18082015-175552
Google Scholar
[29]
P.J. Herrera-Franco; A. Valadez-González. A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering. 2005; 36(8): 597-608.
DOI: 10.1016/j.compositesb.2005.04.001
Google Scholar
[30]
B. Mano; J. Araújo; M. Spinacé; M.A. De Paoli. Polyolefin composites with curaua fibres: Effect of the processing conditions on mechanical properties, morphology and fibres dimensions. Composites Science and Technology. 2010; 70(1): 29-35.
DOI: 10.1016/j.compscitech.2009.09.002
Google Scholar
[31]
D638-10 D. Standard test method for tensile properties of plastics. (2011).
Google Scholar
[32]
A.L. Catto; B.V. Stefani; V.F. Ribeiro; R.M.C. Santana. Influence of coupling agent in compatibility of post-consumer HDPE in thermoplastic composites reinforced with eucalyptus fiber. Materials Research. (2014).
DOI: 10.1590/s1516-14392014005000036
Google Scholar
[33]
C. Albano; J. Reyes; M. Ichazo; J. Gonzalez; M. Brito; D. Moronta. Analysis of the mechanical, thermal and morphological behaviour of polypropylene compounds with sisal fibre and wood flour, irradiated with gamma rays. Polymer Degradation and Stability. 2002; 76(2): 191-203.
DOI: 10.1016/s0141-3910(02)00014-9
Google Scholar
[34]
C.A. Cáceres; S.V. Canevarolo. Degradação do polipropileno durante a extrusão ea geração de compostos orgânicos voláteis. Polímeros: Ciência e Tecnologia. 2009; 19(1): 79-84.
DOI: 10.1590/s0104-14282009000100017
Google Scholar
[35]
X. Wang; W. Yu; Q. Nie; Y. Guo; J. Du. A real-time study on the evolution of the degradation of polypropylene during mixing process. Journal of Applied Polymer Science. 2011; 121(2): 1220-43.
DOI: 10.1002/app.33795
Google Scholar
[36]
M.A. De Paoli. Degradação e estabilização de polímeros: Artliber; (2009).
Google Scholar
[37]
C. de Carvalho; A. Silveira; D.S. Rosa. A study of the controlled degradation of polypropylene containing pro-oxidant agents. SpringerPlus. 2013; 2(1): 1-11.
DOI: 10.1186/2193-1801-2-623
Google Scholar
[38]
A.C. Babetto; S.V. Canevarolo. Efeito do tipo de elemento de rosca na degradação de polipropileno durante múltiplas extrusões. Polímeros: ciência e tecnologia. 2000; 10(2): 90-9.
DOI: 10.1590/s0104-14282000000200011
Google Scholar
[39]
C.R. Passatore. Dissertação de mestrado em nanociências e materiais avançados na Universidade Federal do ABC (2014).
Google Scholar
[40]
F. Rosário; W.M. Pachekoski; A.P.J. Silveira; S.F. Santos; H. Savastano Jr; S. A. Casarin. Resíduos de sisal como reforço em compósitos de polipropileno virgem e reciclado. Polímeros. 2011; 21(2): 90-7.
DOI: 10.1590/s0104-14282011005000021
Google Scholar
[41]
P.V. Joseph; G. Mathew; K. Joseph; G. Groeninckx; S. Thomas. Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos Pt A-Appl Sci Manuf. 2003; 34(3): 275-90.
DOI: 10.1016/s1359-835x(02)00020-9
Google Scholar
[42]
A.A. Morandim-Giannetti; J.A.M. Agnelli; B.Z. Lancas; R. Magnabosco; S.A. Casarin; S.H.P. Bettini. Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydrate Polymers. 2012; 87(4): 2563-8.
DOI: 10.1016/j.carbpol.2011.11.041
Google Scholar
[43]
P.V. Joseph; K. Joseph; S. Thomas; C.K.S. Pillai; V.S. Prasad; G. Groeninckx; M. Sarkissova. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Pt A-Appl Sci Manuf. 2003; 34(3): 253-66.
DOI: 10.1016/s1359-835x(02)00185-9
Google Scholar
[44]
E.F. Santos. Efeito de agentes de acoplamento em compósitos de polipropileno com fibras de coco. (2007).
DOI: 10.1590/s0104-14282010005000036
Google Scholar
[45]
R.M. Leão. Tratamento superficial de fibra de coco e aplicação em materiais compósitos como reforço do polipropileno. Dissertação de mestrado em ciências mecânicas. (2012).
DOI: 10.1590/s1517-707620200001.0873
Google Scholar