Ternary Blended Cementitious Matrix for Vegetable Fiber Reinforced Composites

Article Preview

Abstract:

The present work analyses the behaviour of different binder matrices in order to implement the addition of paper pulp as reinforcement for cementitious composites and assesses the composites flexural properties with time. To prevent microfibers degradation in high-alkaline environments, lower alkaline matrices may be developed. In the present study ternary binder matrices containing ordinary Portland cement (OPC), gypsum (G) and fluid catalytic cracking catalyst residue (FC3R) are presented for that purpose. To assess the performance of the alternatives matrices, pH and conductivity evolution with time were monitored. Also flexural tests were carried out with the intention of evaluate the efficiency of the matrix to preserve fibres within the composite. According to pH and conductivity results is proved that this ternary system offers lower values at early stages (at 3 days) when compared to OPC systems. This inferior alkalinity might be associated to the better mechanical performance with time of the composites when the ternary matrix is used. After 10 months ageing, all the mechanical properties were higher when compared to composites using OPC. Particularly remarkable is the preservation after ageing of the specific energy and deflection at the modulus of rupture when the low-alkalinity matrices were employed, on the contrary what occurred with samples containing OPC where specific energy and deflection were nearly disappeared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fonseca AS, Mori FA, Tonoli GHD, Savastano Junior H, Ferrari DL, Miranda IPA. Properties of an Amazonian vegetable fiber as a potential reinforcing material. Ind Crops Prod 2013; 47: 43–50. doi: 10. 1016/j. indcrop. 2013. 02. 033.

DOI: 10.1016/j.indcrop.2013.02.033

Google Scholar

[2] Tonoli GHD, Belgacem MN, Bras J, Pereira-da-Silva MA, Rocco Lahr FA, Savastano H. Impact of bleaching pine fibre on the fibre/cement interface. J Mater Sci 2012; 47: 4167–77. doi: 10. 1007/s10853-012-6271-z.

DOI: 10.1007/s10853-012-6271-z

Google Scholar

[3] Tan T, Santos SF, Savastano H, Soboyejo WO. Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites. J Mater Sci 2012; 47: 2864–74. doi: 10. 1007/s10853-011-6116-1.

DOI: 10.1007/s10853-011-6116-1

Google Scholar

[4] Jarabo R, Fuente E, Monte MC, Savastano Jr. H, Mutjé P, Negro C. Use of cellulose fibers from hemp core in fiber-cement production. Effect on flocculation, retention, drainage and product properties. Ind Crops Prod 2012; 39: 89–96. doi: 10. 1016/j. indcrop. 2012. 02. 017.

DOI: 10.1016/j.indcrop.2012.02.017

Google Scholar

[5] Mohr BJ, Nanko H, Kurtis KE. Durability of kraft pulp fiber–cement composites to wet/dry cycling. Cem Concr Compos 2005; 27: 435–48. doi: 10. 1016/j. cemconcomp. 2004. 07. 006.

DOI: 10.1016/j.cemconcomp.2004.07.006

Google Scholar

[6] Mohr BJ, Biernacki JJ, Kurtis KE. Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites. Cem Concr Res 2006; 36: 1240–51. doi: 10. 1016/j. cemconres. 2006. 03. 020.

DOI: 10.1016/j.cemconres.2006.03.020

Google Scholar

[7] Santos SF, Rodrigues JA, Tonoli GHD, Almeida AEFS, Savastano Jr. H. Potential Use of Colloidal Silica in Cement Based Composites: Evaluation of the Mechanical Properties. Key Eng Mater 2012; 517: 382–91. doi: 10. 4028/www. scientific. net/KEM. 517. 382.

DOI: 10.4028/www.scientific.net/kem.517.382

Google Scholar

[8] Melo Filho J de A, Silva F de A, Toledo Filho RD. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cem Concr Compos 2013; 40: 30–9. doi: 10. 1016/j. cemconcomp. 2013. 04. 003.

DOI: 10.1016/j.cemconcomp.2013.04.003

Google Scholar

[9] Pereira CL, Savastano Jr. H, Payá J, Santos SF, Borrachero MV, Monzó J, et al. Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Ind Crops Prod 2013; 49: 88–96. doi: 10. 1016/j. indcrop. 2013. 04. 038.

DOI: 10.1016/j.indcrop.2013.04.038

Google Scholar

[10] Khorami M, Ganjian E. The effect of limestone powder, silica fume and fibre content on flexural behaviour of cement composite reinforced by waste Kraft pulp. Constr Build Mater 2013; 46: 142–9. doi: 10. 1016/j. conbuildmat. 2013. 03. 099.

DOI: 10.1016/j.conbuildmat.2013.03.099

Google Scholar

[11] Erdoğan ST, Sağlık AÜ. Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cem Concr Compos 2013; 38: 29–39. doi: 10. 1016/j. cemconcomp. 2013. 03. 004.

DOI: 10.1016/j.cemconcomp.2013.03.004

Google Scholar

[12] Senhadji Y, Escadeillas G, Mouli M, Khelafi H, Benosman. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol 2014; 254: 314–23. doi: 10. 1016/j. powtec. 2014. 01. 046.

DOI: 10.1016/j.powtec.2014.01.046

Google Scholar

[13] Payá J, Monzó J, Borrachero M. Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements. Cem Concr Res 2001; 31: 57–61. doi: 10. 1016/S0008-8846(00)00432-4.

DOI: 10.1016/s0008-8846(00)00432-4

Google Scholar

[14] Payá J, Monzó J, Borrachero M. Fluid catalytic cracking catalyst residue (FC3R): An excellent mineral by-product for improving early-strength development of cement mixtures. Cem Concr Res 1999; 29: 1773–9. doi: 10. 1016/S0008-8846(99)00164-7.

DOI: 10.1016/s0008-8846(99)00164-7

Google Scholar

[15] Anthony JW, Bideaux RA, Bladh KW, Nichols MC. Handbook of Mineralogy. Chantilly, Virginia, USA: Mineralogical Society of America; (2001).

Google Scholar

[16] Colak A. The long-term durability performance of gypsum–Portland cement–natural pozzolan blends. Cem Concr Res 2002; 32: 109–15. doi: 10. 1016/S0008-8846(01)00637-8.

DOI: 10.1016/s0008-8846(01)00637-8

Google Scholar

[17] Çolak A. Physical, mechanical, and durability properties of gypsum–Portland cement–natural pozzolan blends. Can J Civ Eng 2001; 28: 375–82. doi: 10. 1139/cjce-28-3-375.

DOI: 10.1139/l00-123

Google Scholar

[18] BS EN 13279-1. Building gypsum and gypsum-based binders for construction. London, England: The British Standards Institution; (2008).

Google Scholar

[19] Savastano Jr. H, Warden P., Coutts RS. Brazilian waste fibres as reinforcement for cement-based composites. Cem Concr Compos 2000; 22: 379–84. doi: 10. 1016/S0958-9465(00)00034-2.

DOI: 10.1016/s0958-9465(00)00034-2

Google Scholar

[20] Mármol G, Santos SF, Savastano Jr. H, Borrachero MV, Monzó J, Payá J. Mechanical and physical performance of low alkalinity cementitious composites reinforced with recycled cellulosic fibres pulp from cement kraft bags. Ind Crops Prod 2013; 49: 422–7. doi: 10. 1016/j. indcrop. 2013. 04. 051.

DOI: 10.1016/j.indcrop.2013.04.051

Google Scholar

[21] Lea FM, Hewlett PC. Lea's chemistry of cement and concrete (2004).

Google Scholar

[22] Al-Barrak K, Rowell DL. The solubility of gypsum in calcareous soils. Geoderma 2006; 136: 830–7. doi: 10. 1016/j. geoderma. 2006. 06. 011.

DOI: 10.1016/j.geoderma.2006.06.011

Google Scholar

[23] Soriano L, Monzó J, Bonilla M, Tashima MM, Payá J, Borrachero MV. Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cem Concr Compos 2013; 42: 41–8. doi: 10. 1016/j. cemconcomp. 2013. 05. 007.

DOI: 10.1016/j.cemconcomp.2013.05.007

Google Scholar