[1]
Fonseca AS, Mori FA, Tonoli GHD, Savastano Junior H, Ferrari DL, Miranda IPA. Properties of an Amazonian vegetable fiber as a potential reinforcing material. Ind Crops Prod 2013; 47: 43–50. doi: 10. 1016/j. indcrop. 2013. 02. 033.
DOI: 10.1016/j.indcrop.2013.02.033
Google Scholar
[2]
Tonoli GHD, Belgacem MN, Bras J, Pereira-da-Silva MA, Rocco Lahr FA, Savastano H. Impact of bleaching pine fibre on the fibre/cement interface. J Mater Sci 2012; 47: 4167–77. doi: 10. 1007/s10853-012-6271-z.
DOI: 10.1007/s10853-012-6271-z
Google Scholar
[3]
Tan T, Santos SF, Savastano H, Soboyejo WO. Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites. J Mater Sci 2012; 47: 2864–74. doi: 10. 1007/s10853-011-6116-1.
DOI: 10.1007/s10853-011-6116-1
Google Scholar
[4]
Jarabo R, Fuente E, Monte MC, Savastano Jr. H, Mutjé P, Negro C. Use of cellulose fibers from hemp core in fiber-cement production. Effect on flocculation, retention, drainage and product properties. Ind Crops Prod 2012; 39: 89–96. doi: 10. 1016/j. indcrop. 2012. 02. 017.
DOI: 10.1016/j.indcrop.2012.02.017
Google Scholar
[5]
Mohr BJ, Nanko H, Kurtis KE. Durability of kraft pulp fiber–cement composites to wet/dry cycling. Cem Concr Compos 2005; 27: 435–48. doi: 10. 1016/j. cemconcomp. 2004. 07. 006.
DOI: 10.1016/j.cemconcomp.2004.07.006
Google Scholar
[6]
Mohr BJ, Biernacki JJ, Kurtis KE. Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites. Cem Concr Res 2006; 36: 1240–51. doi: 10. 1016/j. cemconres. 2006. 03. 020.
DOI: 10.1016/j.cemconres.2006.03.020
Google Scholar
[7]
Santos SF, Rodrigues JA, Tonoli GHD, Almeida AEFS, Savastano Jr. H. Potential Use of Colloidal Silica in Cement Based Composites: Evaluation of the Mechanical Properties. Key Eng Mater 2012; 517: 382–91. doi: 10. 4028/www. scientific. net/KEM. 517. 382.
DOI: 10.4028/www.scientific.net/kem.517.382
Google Scholar
[8]
Melo Filho J de A, Silva F de A, Toledo Filho RD. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cem Concr Compos 2013; 40: 30–9. doi: 10. 1016/j. cemconcomp. 2013. 04. 003.
DOI: 10.1016/j.cemconcomp.2013.04.003
Google Scholar
[9]
Pereira CL, Savastano Jr. H, Payá J, Santos SF, Borrachero MV, Monzó J, et al. Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Ind Crops Prod 2013; 49: 88–96. doi: 10. 1016/j. indcrop. 2013. 04. 038.
DOI: 10.1016/j.indcrop.2013.04.038
Google Scholar
[10]
Khorami M, Ganjian E. The effect of limestone powder, silica fume and fibre content on flexural behaviour of cement composite reinforced by waste Kraft pulp. Constr Build Mater 2013; 46: 142–9. doi: 10. 1016/j. conbuildmat. 2013. 03. 099.
DOI: 10.1016/j.conbuildmat.2013.03.099
Google Scholar
[11]
Erdoğan ST, Sağlık AÜ. Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cem Concr Compos 2013; 38: 29–39. doi: 10. 1016/j. cemconcomp. 2013. 03. 004.
DOI: 10.1016/j.cemconcomp.2013.03.004
Google Scholar
[12]
Senhadji Y, Escadeillas G, Mouli M, Khelafi H, Benosman. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol 2014; 254: 314–23. doi: 10. 1016/j. powtec. 2014. 01. 046.
DOI: 10.1016/j.powtec.2014.01.046
Google Scholar
[13]
Payá J, Monzó J, Borrachero M. Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements. Cem Concr Res 2001; 31: 57–61. doi: 10. 1016/S0008-8846(00)00432-4.
DOI: 10.1016/s0008-8846(00)00432-4
Google Scholar
[14]
Payá J, Monzó J, Borrachero M. Fluid catalytic cracking catalyst residue (FC3R): An excellent mineral by-product for improving early-strength development of cement mixtures. Cem Concr Res 1999; 29: 1773–9. doi: 10. 1016/S0008-8846(99)00164-7.
DOI: 10.1016/s0008-8846(99)00164-7
Google Scholar
[15]
Anthony JW, Bideaux RA, Bladh KW, Nichols MC. Handbook of Mineralogy. Chantilly, Virginia, USA: Mineralogical Society of America; (2001).
Google Scholar
[16]
Colak A. The long-term durability performance of gypsum–Portland cement–natural pozzolan blends. Cem Concr Res 2002; 32: 109–15. doi: 10. 1016/S0008-8846(01)00637-8.
DOI: 10.1016/s0008-8846(01)00637-8
Google Scholar
[17]
Çolak A. Physical, mechanical, and durability properties of gypsum–Portland cement–natural pozzolan blends. Can J Civ Eng 2001; 28: 375–82. doi: 10. 1139/cjce-28-3-375.
DOI: 10.1139/l00-123
Google Scholar
[18]
BS EN 13279-1. Building gypsum and gypsum-based binders for construction. London, England: The British Standards Institution; (2008).
Google Scholar
[19]
Savastano Jr. H, Warden P., Coutts RS. Brazilian waste fibres as reinforcement for cement-based composites. Cem Concr Compos 2000; 22: 379–84. doi: 10. 1016/S0958-9465(00)00034-2.
DOI: 10.1016/s0958-9465(00)00034-2
Google Scholar
[20]
Mármol G, Santos SF, Savastano Jr. H, Borrachero MV, Monzó J, Payá J. Mechanical and physical performance of low alkalinity cementitious composites reinforced with recycled cellulosic fibres pulp from cement kraft bags. Ind Crops Prod 2013; 49: 422–7. doi: 10. 1016/j. indcrop. 2013. 04. 051.
DOI: 10.1016/j.indcrop.2013.04.051
Google Scholar
[21]
Lea FM, Hewlett PC. Lea's chemistry of cement and concrete (2004).
Google Scholar
[22]
Al-Barrak K, Rowell DL. The solubility of gypsum in calcareous soils. Geoderma 2006; 136: 830–7. doi: 10. 1016/j. geoderma. 2006. 06. 011.
DOI: 10.1016/j.geoderma.2006.06.011
Google Scholar
[23]
Soriano L, Monzó J, Bonilla M, Tashima MM, Payá J, Borrachero MV. Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cem Concr Compos 2013; 42: 41–8. doi: 10. 1016/j. cemconcomp. 2013. 05. 007.
DOI: 10.1016/j.cemconcomp.2013.05.007
Google Scholar