Determination of Relationship between Chemical Composition of Electrolyte and Surface Sample Quality

Article Preview

Abstract:

Paper tracks experimentally confirmed relationship between chemical composition of electrolyte and resulting surface finish quality of created oxide layer during the process of anodic oxidation of aluminium. Examined chemical factors were: concentrations of sulphuric acid, oxalic acid, boric acid and sodium chloride. Aggressive effects of electrolyte were chosen as indicator of resulting layer quality – presence and extent of etching of used substrate sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-157

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the coatings created by anodic oxidation of aluminum, Applied Mechanics and Materials 308 (2013) 95-100.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[2] M. Badida, M. Gombar, L. Sobotova, J. Kmec, A. Vagaská, P. Michal, The influence of sodium chloride on the resulting AAO film thickness", Advanced Materials Research 816 (2013) 18-22.

DOI: 10.4028/www.scientific.net/amr.816-817.18

Google Scholar

[3] M. Gombár, J. Kmec, M. Badida, L. Sobotová, A. Vagaská, P. Michal, The simulation of the temperature effects on the microhardness of anodic alumina oxide layers, Metalurgija 53/1 (2014) 59-62.

Google Scholar

[4] M. Badida, M. Gombár, J. Kmec, L. Sobotová, A. Vagaská, P. Michal, Study of the influence of chemical composition of the electrolyte on microhardness of the layer formed by anodic oxidation of aluminium, Chemické Listy 107 (2012) 973-977.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[5] P. Michal, A. Vagaská, M. Gombár, J. Kmec, Mathematical Modelling and Optimization of Technological Process Using Design of Experiments Methodology, Applied Mechanics and Materials 616 (2014) 61-68.

DOI: 10.4028/www.scientific.net/amm.616.61

Google Scholar

[6] I. Tsangaraki-Kaplanogloua, S. Theohari , Th. Dimogerontakis, N. Kallithrakas-Kontos, W. Yar-Ming, K. Hong-Hsiang , K. Sheila, Effect of alloy types on the anodizing process of aluminum", Surface & Coatings Technology 200/8 (2006) 2634–2641.

DOI: 10.1016/j.surfcoat.2005.07.065

Google Scholar

[7] G. Patermarakis, Development of a theory for the determination of the composition of the anodizing solution inside the pores during the growth of porous anodic Al2O3 films on aluminium by a transport phenomenon analysis, Journal of Electroanalytical Chemistry 447/1-2 (1998).

DOI: 10.1016/s0022-0728(97)00604-9

Google Scholar

[8] T. Aerts, I. DeGraeve, G. Nelissen, J. Deconinck, S. Kubacki, E. Dick, H. Terryn, Experimental study and modelling of anodizing of aluminium in a wall-jetelectrode set-up in laminar and turbulent regime, Corrosion Science 51/7 (2009) 1482–1489.

DOI: 10.1016/j.corsci.2008.12.001

Google Scholar

[9] T. Aerts, I. DeGraeve, G. Nelissen, Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium, Electrochimica Acta 55/12 (2010) 3957–3965.

DOI: 10.1016/j.electacta.2010.02.044

Google Scholar

[10] T. Aerts, T. Dimogerontakis, I. De Graeve, J. Fransaer, H. Terryn, Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film, Surface & Coatings Technology 201/16-17 (2007) 7310–7317.

DOI: 10.1016/j.surfcoat.2007.01.044

Google Scholar

[11] A. Vagaská, P. Michal, I. Bukovský, M. Gombár, J. Kmec, Mathematical modelling and description of the technological process of aluminum anodic oxidation by using the neural networks, International Journal of Materials 1 (2014) 9-16.

DOI: 10.4028/www.scientific.net/amm.616.61

Google Scholar

[12] P. Michal, A. Vagaská, M. Gombár, J. Kmec, E. Spišák, D. Kučerka, Using Neural Networks to Design Predictive Model of Creation of Aluminium Oxide Layer, in: Proceedings of the International 18th Conference on Systems - CSCC 2014, Santorini Island, Greece, 2014, pp.168-173.

DOI: 10.1155/2015/253568

Google Scholar

[13] A. Vagaská, P. Michal, M. Gombár, J. Kmec, E. Spišák, M. Badida, Modelling of the anodizing process of aluminum using neural networks, in: Proceedings of the 15th International Carpathian Control Conference - ICCC 2014, Veľké Karlovice, IEEE, 2014, pp.629-634.

DOI: 10.1109/carpathiancc.2014.6843681

Google Scholar

[14] S. Hrehová, J. Mižáková, Using GUI of matlaband fuzzy principles for evaluating of some process quality, International Journal of Fuzzy Systems and Advanced Applications 1 (2014) 7-14.

Google Scholar

[15] E. Evin, J. Kmec, E. Fechová, Optimizing of electric discharge texturing parameters of rolls of the rolling mill of steel sheets, Applied Mechanics and Materials 420 (2013) 78-84.

DOI: 10.4028/www.scientific.net/amm.420.78

Google Scholar

[16] T. Krenický, Non-contact Study of Surfaces Created Using the AWJ Technology, Manufacturing Technology 15/1 (2015) 61-64.

DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/1/61

Google Scholar

[17] J. Piteľ, J. Mižák, Computational intelligence and low cost sensors in biomass combustion process, in: Proceedings of the 2013 IEEE Symposium Series on Computational Intelligence (SSCI): 2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA), Singapore, IEEE, 2013, pp.165-168.

DOI: 10.1109/cica.2013.6611681

Google Scholar

[18] A. Hošovský, J. Mižáková, J. Piteľ, Improved Modeling of Pneumatic Muscle Actuator Using Recurrent Neural Network, in: Proc. of 2014 IEEE World Congress on Computational Intelligence: 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, IEEE, 2014, pp.4019-4024.

DOI: 10.1109/ijcnn.2014.6889785

Google Scholar