Vibration and Experimental Comparison of Machining Process

Article Preview

Abstract:

Abrasive water jet technology is among the unconventional ways of machining. In today's modern and progressive era is often used for cutting and machining of various types of materials because of lower costs and environmental impact, as the cutting tool is water, in our case, with the addition of abrasives. Objective of the measurements was to evaluate the impact of vibration on the technological head in abrasive water jet technology in changing the selected technological parameters and the flow rate of technological head. In the given experiment, the used material - steel Hardox 500 with a thickness of 10 mm. The effort was to investigate the effects of changes in the speed rate of technological head (by speeds - 40, 200, 400 mm / min) on the size of the vibration acceleration amplitude and its frequency. Based on the measured values ​​of vibration to the technological head create the database and from it is evaluated the data in selected softwares (LabVIEW, SignalExpress and Microsoft Excel). Findings and conclusions are formulated on the basis of graphical dependencies, envelopes frequency spectra and comparison chart of envelopes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-186

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Maňková, Progressive Technologies (Progresívne technológie), TU of Kosice, Fac. of Mechanical Eng., Kosice, 2000 (in Slovak).

Google Scholar

[2] M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[3] T. Duraník, J. Ružbarský, M. Stopper, Influence on the Productivity of Modern Thermoset Preheating in the Compression Molding Technology, Advanced Materials Research 717 (2013) 74-78.

DOI: 10.4028/www.scientific.net/amr.717.74

Google Scholar

[4] A. Panda, J. Jurko, M. Džupon, I. Pandová, Optimization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy 105/16 (2011) 459-461.

Google Scholar

[5] A. Panda, J. Duplák, J. Jurko, Analytical Expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials, 480-481 (2011) 317-322.

DOI: 10.4028/www.scientific.net/kem.480-481.317

Google Scholar

[6] K. Monková, P. Monka, D. Jakubeczyová, The research of the high speed steels produced by powder and casting metallurgy from the view of tool cutting life, Applied Mechanics and Materials 302 (2013) 269-274.

DOI: 10.4028/www.scientific.net/amm.302.269

Google Scholar

[7] A. Panda, J. Duplák, J. Jurko, Theory and Practice in the process of T-vc dependence creation for selected cutting material, Advanced Materials Research 716 (2013) 261-265.

DOI: 10.4028/www.scientific.net/amr.716.261

Google Scholar

[8] A. Panda, J. Duplák, K. Vasilko, Comprehensive Identification of Durability for Selected Cutting Tool Applied on the Base of Taylor Dependence, Advanced Materials Research 716 (2013) 254-260.

DOI: 10.4028/www.scientific.net/amr.716.254

Google Scholar

[9] Z. Krajný, Water jet in practice (Vodný lúč v praxi), Miroslav Mračko, Bratislava, 1998 (in Slovak).

Google Scholar

[10] K. Vasilko, Analytical theory of machining process (Analytická teória trieskového obrábania), Faculty of Manufacturing Technologies of TU Košice, Prešov, 2007 (in Slovak).

Google Scholar

[11] A. Humár, Technology: Machining Technology (Technologie obrábění), Technical University of Brno, Brno, 2004 (in Czech).

Google Scholar

[12] A. Mičietová, M. Čilliková, Technology – machining (Technológia – obrábanie). EDIS Publishing ŽU, Žilina, 2009, pp.390-391 (in Slovak).

Google Scholar

[13] J. Valíček, S. Hloch, Measurement and control of surface quality created by dividing abrasive jet (Měření a řízení kvality povrchu vytvořených hydroabrazivním dělením), 1st ed., ÁMOS, Ostrava, 2008 (in Czech).

Google Scholar

[14] J. Kmec, Impact of water jet parameters on surface created by hydroabrasive erosion (Vplyv parametrov vodného lúča na povrch vytvorený hydroabrazívnou eróziou), FMT TUKE, Prešov, 2010 (in Slovak).

Google Scholar

[15] E. Spišák, R. Šúň, J. Kmec, M. Gombár, Analysis of cutting heads for AWJ machining technology, Transfer inovácií 22 (2012) 75-79.

Google Scholar

[16] J. Kmec, L. Sobotova, L. Bicejova, Categories of factors influencing hydroerosion, in: Proc. 13th Int. Sci. Conf. Trends and Innovative Approaches in Business Processes, 2010, Kosice, 1-10.

Google Scholar

[17] S. Hloch, J. Valíček, Influence factors on surface topography created by hydroabrasive division (Vplyv faktorov na topografiu povrchov vytvorených hydroabrazívnym delením), FMT of TU Košice, Prešov, 2008 (in Slovak).

Google Scholar

[18] S. Fabian, Š. Salokyová, AWJ cutting: the technological head vibrations with different abrasive mass flow rates, Applied Mechanics and Materials 308 (2013) 1-6.

DOI: 10.4028/www.scientific.net/amm.308.1

Google Scholar

[19] S. Fabian, Š. Salokyová, The technological head vibrations with different abrasive mass flow rates, Applied Mechanics and Materials 308 (2013) 1-6.

DOI: 10.4028/www.scientific.net/amm.308.1

Google Scholar

[20] A. Panda, J. Duplák, T. Vorobeľ, J. Jurko, S. Fabian, Study of the Surface Material AISI 304 Usable for Actuator after the Process of Turning, Applied Mechanics and Materials 460 (2014) 107-114.

DOI: 10.4028/www.scientific.net/amm.460.107

Google Scholar

[21] P. Michalik, J. Zajac, M. Hatala, D. Mitaľ, V. Fečová, Monitoring surface roughness of thin-walled components from steel C45 machining down and up milling, Measurement 58 (2014) 416-428.

DOI: 10.1016/j.measurement.2014.09.008

Google Scholar

[22] R. Cep, L. Cepova, M. Hatala, I. Budak, A. Janasek, Ceramic cutting tool tests with interupted cut simulator, in: Proc. Int. Conf. on Innovative Technologies IN-TECH 2010, Praha: 14. - 16. 9. 2010, AS, Jaroměř, 2010, pp.144-148.

Google Scholar

[23] T. Krenický, M. Rimár, Monitoring of vibrations in the technology of AWJ, Key Engineering Materials 496 (2012) 229-234.

DOI: 10.4028/www.scientific.net/kem.496.229

Google Scholar

[24] M. Rimár, M. Fedák, J. Mihalčová, Š. Kuna, Adaptive rejection filter for the drives stabilization of pressure die-casting machines, Advances in Mechanical Engineering (2014) 1-10.

DOI: 10.1155/2014/453724

Google Scholar

[25] D. Matisková, M. Kotus, Methodology for determining the cutting conditions in drilling of automated manufacturing, Acta Universitatis Agriculturare et Silviculturae Mendelianae Brunensis 62/5 (2014) 1033-1040.

DOI: 10.11118/actaun201462051033

Google Scholar

[26] R. Kreheľ, Ľ. Straka, T. Krenický, Diagnostics of Production Systems Operation Based on Thermal Processes Evaluation, Applied Mechanics and Materials 308 (2013) 121-126.

DOI: 10.4028/www.scientific.net/amm.308.121

Google Scholar

[27] M. Zelenak et al., Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests, Metalurgija 51/3 (2012) 309-312.

Google Scholar

[28] M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[29] S. Adamczak, W. Makiela, K. Janusiewicz, K. Stepien, Statistical validation of the method for measuring radius variations of components on the machine tool, Metrology and Measuring Systems 18/1 (2011) 35-46.

DOI: 10.2478/v10178-011-0004-5

Google Scholar

[30] E. Spišák, J. Slota, J. Majerníková, Ľ. Kaščák, P. Malega, Inhomogeneous plastic deformation of tinplates under uniaxial stress state, Chemické listy 106 (2012) 537-540.

Google Scholar

[31] J Brezinová, A. Guzanová, E. Spišák, Assessment of properties thermal sprayed coatings realised using cermet blend powder, Metalurgija 53/4 (2014) 661-664.

Google Scholar

[32] T. Zaborowski, W. Serebriakow, Ekowytwarzanie, Gorzow, 2007, pp.81-100.

Google Scholar

[33] M. Čilliková, J. Salaj, A. Mičietová, J. Pilc, Influence of Cutting Fluids on Cutting Forces when Grinding Bearing Steel, J. of Machine Manufacturing Design and Manufacturing 49 (2009) 101-103.

Google Scholar

[34] J. Janekova, J. Kovac, D. Onofrejova, Modelling of Production Lines for Mass Production of Sanitary Products, Procedia Engineering 96 (2014) 330-337.

Google Scholar

[35] J. Šebo, J. Svetlík, M. Fedorčáková, J. Dobránsky, The comparison of performance and average costs of robotic and human based work station for dismantling processes, Acta Technica Corviniensis: Bulletin of Engineering 5/4 (2012) 67-70.

Google Scholar

[36] J. Novak-Marcincin, M. Janak, L. Novakova-Marcincinova, V. Fecova, Possibility of a quick check on milling strategy suitability, Technical Gazette 19/4 (2012) 959-964.

DOI: 10.1063/1.4707641

Google Scholar

[37] I. Vojtko, V. Simkulet, P. Baron, I. Orlovský, Microstructural Characteristics Investigation of the Chip-Making Process after Machining, Applied Mechanics and Materials 616 (2014) 344-350.

DOI: 10.4028/www.scientific.net/amm.616.344

Google Scholar

[38] T. Krenický, Non-contact Study of Surfaces Created Using the AWJ Technology, Manufacturing Technology 15/1 (2015) 61-64.

DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/1/61

Google Scholar

[39] Š. Álló, V. Kročko, M. Korenko, Z. Andrássyová, D. Foldešiová, Effect of chemical degreasing on corrosion stability of components in automobile industry, Advanced Materials Research 801 (2013) 19-23.

DOI: 10.4028/www.scientific.net/amr.801.19

Google Scholar