[1]
Z. Krajný, Water jet in practice (Vodný lúč v praxi), Miroslav Mračko, Bratislava, 1998 (in Slovak).
Google Scholar
[2]
K. Vasilko, Analytical theory of machining process (Analytická teória trieskového obrábania), FMT TUKE, Prešov, 2007 (in Slovak).
Google Scholar
[3]
A. Humár, Technology I.: Machining Technology (Technologie obrábení) - 2nd part, TU in Brno, Brno, 2004 (in Czech).
Google Scholar
[4]
A. Mičietová, M. Čilliková, Technology – machining (Technológia – obrábanie), EDIS Publishing ŽU, Žilina, 2009 (in Slovak).
Google Scholar
[5]
J. Valíček, S. Hloch, Measurement and control of surface quality created by dividing abrasive jet (Merení a rízení kvality povrchu vytvorených hydroabrazivním delením), 1st ed., ÁMOS, Ostrava, 2008 (in Czech).
Google Scholar
[6]
J. Kmec, Impact parameters for water jet surface created Hydroabrasive erosion (Vplyv parametrov vodného lúča na povrch vytvorený hydroabrazívnou eróziou), Edition of scientific and technical literature, 2010 (in Slovak).
Google Scholar
[7]
I. Maňková, Progressive Technologies (Progresívne technológie), FME TUKE, Košice, 2000 (in Slovak).
Google Scholar
[8]
E. Spišák, R. Šúň, J. Kmec, M. Gombár, Analysis of cutting heads for AWJ machining technology, Transfer inovácií 22 (2012) 75-79.
Google Scholar
[9]
J. Kmec, L. Sobotova, L. Bicejova, Categories of factors influencing hydroerosion, in: Proc. 13th Int. Sci. Conf. Trends and Innovative Approaches in Business Processes, 2010, Kosice, 1-10.
Google Scholar
[10]
S. Hloch, J. Valíček, Influence factors on surface topography created by hydroabrasive division (Vplyv faktorov na topografiu povrchov vytvorených hydroabrazívnym delením), FMT of TU Košice, Prešov, 2008 (in Slovak).
Google Scholar
[11]
S. Fabian, Š. Salokyová, The technological head vibrations with different abrasive mass flow rates, Applied Mechanics and Materials 308 (2013) 1-6.
DOI: 10.4028/www.scientific.net/amm.308.1
Google Scholar
[12]
A. Panda, J. Duplák, T. Vorobeľ, J. Jurko, S. Fabian, Study of the Surface Material AISI 304 Usable for Actuator after the Process of Turning, Applied Mechanics and Materials 460 (2014) 107-114.
DOI: 10.4028/www.scientific.net/amm.460.107
Google Scholar
[13]
M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.
DOI: 10.4028/www.scientific.net/amm.308.95
Google Scholar
[14]
T. Duraník, J. Ružbarský, M. Stopper, Influence on the Productivity of Modern Thermoset Preheating in the Compression Molding Technology, Advanced Materials Research 717 (2013) 74-78.
DOI: 10.4028/www.scientific.net/amr.717.74
Google Scholar
[15]
A. Panda, J. Jurko, M. Džupon, I. Pandová, Optimization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy 105/16 (2011) 459-461.
Google Scholar
[16]
A. Panda, J. Duplák, J. Jurko, Analytical Expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials, 480-481 (2011) 317-322.
DOI: 10.4028/www.scientific.net/kem.480-481.317
Google Scholar
[17]
K. Monková, P. Monka, D. Jakubeczyová, The research of the high speed steels produced by powder and casting metallurgy from the view of tool cutting life, Applied Mechanics and Materials 302 (2013) 269-274.
DOI: 10.4028/www.scientific.net/amm.302.269
Google Scholar
[18]
A. Panda, J. Duplák, J. Jurko, Theory and Practice in the process of T-vc dependence creation for selected cutting material, Advanced Materials Research 716 (2013) 261-265.
DOI: 10.4028/www.scientific.net/amr.716.261
Google Scholar
[19]
A. Panda, J. Duplák, K. Vasilko, Comprehensive Identification of Durability for Selected Cutting Tool Applied on the Base of Taylor Dependence, Advanced Materials Research 716 (2013) 254-260.
DOI: 10.4028/www.scientific.net/amr.716.254
Google Scholar
[20]
P. Michalik, J. Zajac, M. Hatala, D. Mitaľ, V. Fečová, Monitoring surface roughness of thin-walled components from steel C45 machining down and up milling, Measurement 58 (2014) 416-428.
DOI: 10.1016/j.measurement.2014.09.008
Google Scholar
[21]
R. Cep, L. Cepova, M. Hatala, I. Budak, A. Janasek, Ceramic cutting tool tests with interupted cut simulator, in: Proc. Int. Conf. on Innovative Technologies IN-TECH 2010, Praha: 14. - 16. 9. 2010, AS, Jaroměř, 2010, pp.144-148.
Google Scholar
[22]
T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.
Google Scholar
[23]
M. Rimár, M. Fedák, J. Mihalčová, Š. Kuna, Adaptive rejection filter for the drives stabilization of pressure die-casting machines, Advances in Mechanical Engineering (2014) 1-10.
DOI: 10.1155/2014/453724
Google Scholar
[24]
D. Matisková, M. Kotus, Methodology for determining the cutting conditions in drilling of automated manufacturing, Acta Universitatis Agriculturare et Silviculturae Mendelianae Brunensis 62/5 (2014) 1033-1040.
DOI: 10.11118/actaun201462051033
Google Scholar
[25]
R. Kreheľ, Ľ. Straka, T. Krenický, Diagnostics of Production Systems Operation Based on Thermal Processes Evaluation, Applied Mechanics and Materials 308 (2013) 121-126.
DOI: 10.4028/www.scientific.net/amm.308.121
Google Scholar
[26]
M. Zelenak, J. Valicek, S. Hloch, D. Kozak, I. Samardzic, M. Harnicarova, J. Klich, P. Hlavacek, R. Cincio M., Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests, Metalurgija 51/3 (2012).
Google Scholar
[27]
M. Zelenak, J. Valicek, J. Brumek, P. Hlavacek, B. Haluzikova, M. Vylezik, P. Babkova, M. Harnicarova, V. Szarkova, M. Kusnerova, V. Kubena: Measurement and analysis of the hardnees of aluminium surface layers by the nanoindentation and scratch tests, Chemické Listy 105 (2011).
Google Scholar
[28]
E. Spišák, J. Slota, J. Majerníková, Ľ. Kaščák, P. Malega, Inhomogeneous plastic deformation of tinplates under uniaxial stress state, Chemické listy 106 (2012) 537-540.
Google Scholar
[29]
J Brezinová, A. Guzanová, E. Spišák, Assessment of properties thermal sprayed coatings realised using cermet blend powder, Metalurgija 53/4 (2014) 661-664.
Google Scholar
[30]
T. Zaborowski, W. Serebriakow, Ekowytwarzanie, Gorzow, 2007, pp.81-100.
Google Scholar
[31]
M. Čilliková, J. Salaj, A. Mičietová, J. Pilc, Influence of Cutting Fluids on Cutting Forces when Grinding Bearing Steel, Journal of Machine Manufacturing Design and Manufacturing, The Scientific Society for Mechanical Engineering, Hungary, Vol. 49, Issue E3-E5, 2009, pp.101-103.
Google Scholar
[32]
J. Janekova, J. Kovac, D. Onofrejova: Modelling of Production Lines for Mass Production of Sanitary Products, Procedia Engineering 96 (2014) 330-337.
Google Scholar
[33]
J. Šebo, J. Svetlík, M. Fedorčáková, J. Dobránsky, The comparison of performance and average costs of robotic and human based work station for dismantling processes, Acta Technica Corviniensis: Bulletin of Engineering 5/4 (2012) 67-70.
Google Scholar
[34]
I. Vojtko, V. Simkulet, P. Baron, I. Orlovský, Microstructural Characteristics Investigation of the Chip-Making Process after Machining, Applied Mechanics and Materials 616 (2014) 344-350.
DOI: 10.4028/www.scientific.net/amm.616.344
Google Scholar
[35]
Š. Álló, V. Kročko, M. Korenko, Z. Andrássyová, D. Foldešiová, Effect of chemical degreasing on corrosion stability of components in automobile industry, Advanced Materials Research 801 (2013) 19-23.
DOI: 10.4028/www.scientific.net/amr.801.19
Google Scholar
[36]
T. Krenický, Meaning of vibrodiagnosis in the technology of AWJ, in: Operation and diagnostics of machines and production systems operational states, Brno: Tribun EU, 2008, pp.124-128.
Google Scholar
[37]
A. Czán, M. Šajgalík, A. Martikan, Observation of dynamic processes in cutting zone when machining nickel alloys, Komunikacie 16/3A (2015) 161-168.
DOI: 10.26552/com.c.2014.3a.161-168
Google Scholar