[1]
Ľ. Bičejová, Abrasive kind and granularity changes affects to water jet technology head vibration during cutting HARDOX material thickness alternation process, Applied Mechanics and Materials 308 (2013) 75-79.
DOI: 10.4028/www.scientific.net/amm.308.75
Google Scholar
[2]
Ľ. Bičejová, Water jet technology head vibration generation due to selected technology parameters fluctuation effect during alloy cutting, Applied Mechanics and Materials 308 (2013) 81-86.
DOI: 10.4028/www.scientific.net/amm.308.81
Google Scholar
[3]
Ľ. Bičejová, S. Pavlenko, J. Maščenik, Abrasive Granularity Impact on Water Jet Technology Head Vibrations during Cutting Steel, Applied Mechanics and Materials 389 (2013) 304-309.
DOI: 10.4028/www.scientific.net/amm.389.304
Google Scholar
[4]
J. Maščenik, S. Pavlenko, Ľ. Bičejová, Component Selected Parameters Geometrical Tolerance Value Experimental Specification, Applied Mechanics and Materials 389 (2013) 1096-1099.
DOI: 10.4028/www.scientific.net/amm.389.1096
Google Scholar
[5]
S. Fabian, Š. Salokyová, Experimental Investigation and Analysis of the Impact in Abrasive Mass Flow Changes with and without the Use of Sieve Analysis on Technological Head Vibrations at Hydroabrasive Cutting, Applied Mechanics and Materials 616 (2014).
DOI: 10.4028/www.scientific.net/amm.616.85
Google Scholar
[6]
Š. Salokyová, S. Fabian, The analysis of vibrations creation in abrasive water jet technology during cutting materials produced by metallurgical technologies, Metalurgija 53/3 (2014) 426.
Google Scholar
[7]
S. Rusnáková, D. Kučerka, Š. Husár, R. Hrmo, M. Kučerková, V. Rusnák, Education in Composite Materials, in: Proc. 16th International Conferance on Interactive Collaborative Learning. ICL 2013, CTI Villach, Kazan National Research Technological University, 2013, pp.216-221.
Google Scholar
[8]
A. Šmeringaiová, P. Šmeringai, Dynamic analysis of worm gear boxes, Applied Mechanics and Materials 616 (2014) 216-223.
DOI: 10.4028/www.scientific.net/amm.616.216
Google Scholar
[9]
S. Rusnáková, D. Kučerka, M. Podařil, J. Kmec, V. Rusnák, Ľ. Bičejová, Influence of processing parameters production of sandwich composite structures designed especially for the construction of machine tool parts, Applied Mechanics and Materials 616 (2014).
DOI: 10.4028/www.scientific.net/amm.616.333
Google Scholar
[10]
Ľ. Bičejová, S. Fabian, Analysis of technological head working pressure, tilt angle and shift impact to its vibrations using AWJ, Applied Mechanics and Materials 616 (2014) 159-166.
DOI: 10.4028/www.scientific.net/amm.616.159
Google Scholar
[11]
J. Maščenik, S. Pavlenko, Determining the exact value of the shape deviations of the experimental measurements, Applied Mechanics and Materials 624 (2014) 339-343.
DOI: 10.4028/www.scientific.net/amm.624.339
Google Scholar
[12]
J. Haľko, S. Pavlenko, Design strenght calculation of cycloidal lantern gear, BarSU Herald Scientific and practical journal: Physical and Mathematical Sciences: Engineering Sciences 1 (2013) 58-65.
Google Scholar
[13]
T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.
Google Scholar
[14]
T. Krenický, M. Rimár, Monitoring of Vibrations in the technology of AWJ, Key Engineering Materials 496 (2012) 229-234.
DOI: 10.4028/www.scientific.net/kem.496.229
Google Scholar
[15]
R. Hrmo, D. Kučerka, Information competence and evolution of e-learning text with the fog index, Interactive Collaborative learning, in: Proc. 14th International Conference on Interactive Collaborative Learning (ICL 2011) and 11th International Conference Virtual University, 2011, pp.390-394.
DOI: 10.1109/icl.2011.6059612
Google Scholar
[16]
A. Šmeringaiová, Modeling and simulation of mechanisms, Vol. 4; 26. -30. 5. 2014, Magnanimitas, Hradec Králové, Czech Republic, 2014, pp.1465-1471.
Google Scholar
[17]
J. Maščenik, Š. Gašpár, Experimental Assessment of Roughness Changes in the Cutting Surface and Microhardness Changes of the Material S 355 J2 G3 after Being Cut by Non-Conventional Technologies, Advanced Materials Research 314-316 (2011).
DOI: 10.4028/www.scientific.net/amr.314-316.1944
Google Scholar
[18]
J. Paško, Š. Gašpár, Technological Factors of Die Casting, RAM-Verlag, Lüdenscheid, Germany, (2014).
Google Scholar
[19]
E. Vitikáč Batešková, A. Panda, Stroke design for the press roller on the curling Twincylinder machine, Applied Mechanics and Materials 616 (2014) 351-358.
DOI: 10.4028/www.scientific.net/amm.616.351
Google Scholar
[20]
T. Krenický, Meaning of vibrodiagnosis in the technology of AWJ, in: Operation and diagnostics of machines and production systems operational states, Brno: Tribun EU, 2008, pp.124-128.
Google Scholar
[21]
F.L. Chen, E. Siores, K. Patel, Improving the cut surface qualities using different controlled nozzle oscillation techniques, International Journal of Machine Tools and Manufacture, 42 (2002) 717-722.
DOI: 10.1016/s0890-6955(01)00161-4
Google Scholar
[22]
D. Arola, M. Ramulu, Mechanism of material removal in abrasive waterjet machining of common aerospace materials, in: Proceedings of the seventh American waterjet conference, Seattle, 1993, pp.43-46.
DOI: 10.1016/s0043-1648(97)00131-2
Google Scholar
[23]
S. Fabian, Š. Salokyová, P. Jacko, Experimental verification of the frequency spectrum of unwears and wears guidance tube on the technological head vibrations creation in the production system with AWJ technology, Manufacturing Technology 12/13 (2012).
DOI: 10.21062/ujep/x.2012/a/1213-2489/mt/12/2/105
Google Scholar
[24]
S. Fabian, Š. Salokyová, T. Olejár, Analysis and experimental study of the technological head feed rate impact on vibrations and their frequency spectra during material cutting using AWJ technology, Nonconventional Technologies Review 4 (2011).
Google Scholar
[25]
T. Krenický, Non-contact Study of Surfaces Created Using the AWJ Technology, Manufacturing Technology 15/1 (2015) 61-64.
DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/1/61
Google Scholar
[26]
J. Kmec, Impact parameters for water jet surface created Hydroabrasive erosion (Vplyv parametrov vodného lúča na povrch vytvorený hydroabrazívnou eróziou), Edition of scientific and technical literature, 2010 (in Slovak).
Google Scholar