Experimental Investigation and Determination of Abrasive Granularity Change Impact to Technology Head Vibration Generating during AWJ Technology Steel Cutting

Article Preview

Abstract:

The paper describes abrasive kind and granularity change impact to technology head vibration generating during cutting of seven selected investigated kinds of steel by means of AWJ technology. The investigation of abrasive granularity impact is carried out for three speeds of the technology head shift. A set of 3D comparative graphs of vibration parameter relations for seven analyzed kinds of steel from graphical records of vibration acceleration amplitude to frequency relation was created. On the base of the comparative graphs a discussion about results is generated and conclusions are defined. The work presents a thematically integrated part of a dissertation results and completes a group of recent knowledge focused on production systems working state diagnostics with the water jet technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-227

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ľ. Bičejová, Abrasive kind and granularity changes affects to water jet technology head vibration during cutting HARDOX material thickness alternation process, Applied Mechanics and Materials 308 (2013) 75-79.

DOI: 10.4028/www.scientific.net/amm.308.75

Google Scholar

[2] Ľ. Bičejová, Water jet technology head vibration generation due to selected technology parameters fluctuation effect during alloy cutting, Applied Mechanics and Materials 308 (2013) 81-86.

DOI: 10.4028/www.scientific.net/amm.308.81

Google Scholar

[3] Ľ. Bičejová, S. Pavlenko, J. Maščenik, Abrasive Granularity Impact on Water Jet Technology Head Vibrations During Cutting Steel, Applied Mechanics and Materials 389 (2013) 304-309.

DOI: 10.4028/www.scientific.net/amm.389.304

Google Scholar

[4] J. Maščenik, S. Pavlenko, Ľ. Bičejová, Component Selected Parametres Geometrical Tolerance Value Experimental Specification, Applied Mechanics and Materials 389 (2013) 1096-1099.

DOI: 10.4028/www.scientific.net/amm.389.1096

Google Scholar

[5] S. Fabian, Š. Salokyová, Experimental Investigation and Analysis of the Impact in Abrasive Mass Flow Changes with and without the Use of Sieve Analysis on Technological Head Vibrations at Hydroabrasive Cutting, Applied Mechanics and Materials 616 (2014).

DOI: 10.4028/www.scientific.net/amm.616.85

Google Scholar

[6] Š. Salokyová, S. Fabian, The analysis of vibrations creation in abrasive water jet technology during cutting materials produced by metallurgical technologies, Metalurgija 53/3 (2014) 426.

Google Scholar

[7] S. Rusnáková, D. Kučerka, Š. Husár, R. Hrmo, M. Kučerková, V. Rusnák, Education in Composite Materials, in: Proc. 16th International Conferance on Interactive Collaborative Learning. ICL 2013, CTI Villach, Kazan National Research Technological University, 2013, pp.216-221.

Google Scholar

[8] A. Šmeringaiová, P. Šmeringai, Dynamic analysis of worm gear boxes, Applied Mechanics and Materials 616 (2014) 216-223.

DOI: 10.4028/www.scientific.net/amm.616.216

Google Scholar

[9] S. Rusnáková, D. Kučerka, M. Podařil, J. Kmec, V. Rusnák, Ľ. Bičejová, Influence of processing parameters production of sandwich composite structures designed especially for the construction of machine tool parts, Applied Mechanics and Materials 616 (2014).

DOI: 10.4028/www.scientific.net/amm.616.333

Google Scholar

[10] Ľ. Bičejová, S. Fabian, Analysis of technological head working pressure, tilt angle and shift impact to its vibrations using AWJ, Applied Mechanics and Materials 616 (2014) 159-166.

DOI: 10.4028/www.scientific.net/amm.616.159

Google Scholar

[11] J. Maščenik, S. Pavlenko, Determining the exact value of the shape deviations of the experimental measurements, Applied Mechanics and Materials 624 (2014) 339-343.

DOI: 10.4028/www.scientific.net/amm.624.339

Google Scholar

[12] J. Haľko, S. Pavlenko, Design strenght calculation of cycloidal lantern gear, BarSU Herald Scientific and practical journal: Physical and Mathematical Sciences: Engineering Sciences 1 (2013) 58-65.

Google Scholar

[13] E. Vitikáč Batešková, A. Panda, Stroke design for the press roller on the curling Twincylinder machine, Applied Mechanics and Materials 616 (2014) 351-358.

DOI: 10.4028/www.scientific.net/amm.616.351

Google Scholar

[14] R. Hrmo, D. Kučerka, L. Krištofiaková, Developing the Information Competencies via E-learning and Assessing the Qualities of E-learning Text, in: Proc. 15th International Conference on Interactive Collaborative Learning and 41st International Conference on Engineering Pedagogy, Villach, (2012).

DOI: 10.1109/icl.2012.6402065

Google Scholar

[15] R. Hrmo, D. Kučerka, Information competence and evolution of e-learning text with the fog index, Interactive Collaborative learning, in: Proc. 14th International Conference on Interactive Collaborative Learning (ICL 2011) and 11th International Conference Virtual University, 2011, pp.390-394.

DOI: 10.1109/icl.2011.6059612

Google Scholar

[16] A. Šmeringaiová, Modeling and simulation of mechanisms, Vol. 4; 26. -30. 5. 2014, Magnanimitas, Hradec Králové, Czech Republic, 2014, pp.1465-1471.

Google Scholar

[17] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.

Google Scholar

[18] M. Badida, L. Sobotová, The requirements of abrasives and their possibilities in recycling in AWJ Technologies, in: Proc. of 13th Int. Multidisciplinary Sci. Geoconference SGEM 2013, 16- 22 June, 2013, Albena, Bulgaria. Sofia: STEF92 Technology, 2013, pp.479-486.

DOI: 10.5593/sgem2013/bd4/s18.026

Google Scholar

[19] J. Maščenik, Š. Gašpár, Experimental Assessment of Roughness Changes in the Cutting Surface and Microhardness Changes of the Material S 355 J2 G3 after Being Cut by Non-Conventional Technologies, Advanced Materials Research 314-316 (2011).

DOI: 10.4028/www.scientific.net/amr.314-316.1944

Google Scholar

[20] M. Badida, J. Kmec, L. Sobotová, Ľ. Bičejová, M. Gombár, Hydroerosion and Environment, 1st ed., RAM-Verlag, Lüdenscheid, Germany, (2013).

Google Scholar

[21] J. Kmec et al., Waterjet for Practice, 2nd ed., RAM-Verlag, Lüdenscheid, Germany, (2014).

Google Scholar

[22] J. Paško, Š. Gašpár, Technological Factors of Die Casting, RAM-Verlag, Lüdenscheid, Germany, (2014).

Google Scholar

[23] J. Haľko, J. Maščenik, Differential with an integrated, newly - developed two-stage transfer, Applied Mechanics and Materials 510 (2014) 215-219.

DOI: 10.4028/www.scientific.net/amm.510.215

Google Scholar