The Effect of Support on the Surface Properties and Photocatalytic Activity of Supported TiO2 Catalysts

Article Preview

Abstract:

In the present work two series of TiO2/SiO2 and TiO2/Al2O3 photocatalysts were investigated. The content of the active component was varied. Photocatalysts were prepared using the heterogeneous deposition method. It was revealed that the prepared photomaterials demonstrate high photocatalytic activity in decomposition of organic compounds in water solutions, and application of SiO2 aerogel as a support ensured the incorporation of TiO2 into the structure of the support via formation of Ti-O-Si bonds. The prepared materials, in which the active component is under the influence of electron-acceptor media, demonstrated enhanced selectivity of the surface towards the ability to generate electronic vacancies (about 90%). According to the experimental data, TiO2/SiO2 photocatalysts proved to be more active in comparison with TiO2/Al2O3 materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-231

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Wang, J. Hui, L. Yang, H. Huang, Y. Cai, S. Yin, Y. Ding, Enhanced photocatalytic performance of Bi2O3/H-ZSM-5 composite for rhodamine B degradation under UV light irradiation, Appl. Surf. Sci. 289 (2014) 224-229.

DOI: 10.1016/j.apsusc.2013.10.139

Google Scholar

[2] J. Yu, J. Jin, B. Cheng, M. Jaroniec, A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel, J. Mater. Chem. A. 2 (2014) 3407-3416.

DOI: 10.1039/c3ta14493c

Google Scholar

[3] A. Evstratov, C. Chis, A. Malygin, J. -M. Taulemeusse, P. Gaudon, T. Vincent, Free Charge Carrier Repartition over the Surface of Photosensitive materials: Why and How to Manage?, Russian Journal of General Chemistry. 78 (2008) 1070-1080.

DOI: 10.1134/s107036320805040x

Google Scholar

[4] M. Fedotova, G. Voronova, E. Emelyanova, N. Radishevskaya, O. Vodyankina, Nanodispersed photocatalysts on the base of titanium dioxide, Russian Journal of Physical Chemistry. 83 (2009) 1371-1375.

DOI: 10.1134/s0036024409080202

Google Scholar

[5] T. Izaak, O. Vodyankina, Macroporous monolithic materials: synthesis, properties and application, Russ. Chem. Rev. 78 (2009) 77-88.

DOI: 10.1070/rc2009v078n01abeh003892

Google Scholar

[6] H. Chun, W. Yizhong, T. Hongxiao, Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes, Applied Catalysis B: Envir. 30 (2001) 277-285.

DOI: 10.1016/s0926-3373(00)00237-x

Google Scholar

[7] S. S. Hong, M.S. Lee, S. S. Park, G. -D. Lee, Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol, Catalysis Today. 87 (2003) 99-105.

DOI: 10.1016/j.cattod.2003.10.012

Google Scholar

[8] M. M. Mohamed, T.M. Salama, T. Yamaguchi, Synthesis, characterization and catalytic properties of titania–silica catalysts, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 207 (2002) 25-32.

DOI: 10.1016/s0927-7757(02)00002-x

Google Scholar

[9] M. C. Capel-Sanchez, V. A. Pena-O'Shea, L. Barrio, J. M. Campos-Martin, J. L. G. Fierro, TD-DFT analysis of the electronic spectra of Ti-containing catalysts, Topics in Catal. 41 (2006) 1-4.

DOI: 10.1007/s11244-006-0091-9

Google Scholar

[10] M. H. Costa Tania, M. R. Gallas, E. V. Benvenutti, A. H. Jornada Joao, Study of Nanocrystalline γ-Al2O3 Produced by High-Pressure Compaction, J. Phys. Chem. B. 103 (1999) 4278-4284.

DOI: 10.1021/jp983791o

Google Scholar

[11] I. L. Liu, B. C. Lin, S. Y. Chen, P. Shen, AlO2 and γ-Al2O3 Nanoparticles by Pulsed Laser Ablation in Aqueous Solution, J. Phys. Chem. C. 115 (2011) 4994-5002.

Google Scholar

[12] Yu. Tretyakov, A. Lukashin, A. Eliseev, Synthesis of functional nanocomposites based on solid-phase nanoreactors, Russ. Chem. Rev. 73 (2004) 899-921.

DOI: 10.1070/rc2004v073n09abeh000918

Google Scholar

[13] J. L. Adgate, B. D. Goldstein, L. M. McKenzie, Potentian Public Health Hazards, Exposures and Health Effects from Unconventional Natural Gas Development, Environ. Sci. Technol. 48 (2014) 8307-8320.

DOI: 10.1021/es404621d

Google Scholar