[1]
Abdullah M. M. A., H. Kamarudin, H. Mohammed, I. Khairul Nizar, A. R. Rafiza & Y. Zarina. 2011a. The relationship of NaOH Molarity, Na2SiO3/NaOH Ratio, Fly Ash/Alkaline Activator Ratio and Curing Temperature to the Strength of Fly Ash-Based Geopolymer, Advanced Material Research, Vols. 328-330 (2011).
DOI: 10.4028/www.scientific.net/amr.328-330.1475
Google Scholar
[2]
Abdullah M. M. A., H. Kamarudin, I. Khairul Nizar, M. Bn Hussain, Y. Zarina And A. R. Rafiza. 2011b. Correlation Between Na2SiO3/NaOh Ratio And Fly Ash/Alkaline Activator Ratio To The Strength Of Geopolymer, Advanced Materials Research, Vols. 341-342, pp.189-193.
DOI: 10.4028/www.scientific.net/amr.341-342.189
Google Scholar
[3]
Ahmed E. and W. H. Wan Badaruzzaman. 2005. Finite Element Prediction on the Applicability of Profiled Steel Sheet Dry Board Structural composite system as a Disaster Relief Shelter, Journal of Construction and Building Materials, Vol. 19, No. 4, pp.285-295.
DOI: 10.1016/j.conbuildmat.2004.07.019
Google Scholar
[4]
Ahmed E., W.H. Wan Badaruzzaman, & Wright, H.D. 2000. Experimental and Finite Element study of profiled steel sheet dry board folded plate structures,. Thin-Walled Structures, Vol. 38, p.125–143.
DOI: 10.1016/s0263-8231(00)00039-2
Google Scholar
[5]
Akhand A. M., W.H. Wan Badaruzzaman and H.D. Wright 2004. Combined Flexure and Web Crippling of a Low-Ductility High Strength Steel Decking: Experiment and a Finite Element Model, Thin-Walled Structures, Vol. 42, No. 7, pp.1067-1082.
DOI: 10.1016/j.tws.2004.03.023
Google Scholar
[6]
American Iron and Steel Institute AISI. (1996). Specification for the Design of Cold-Formed Steel Structural Members, Washington, DC.
Google Scholar
[7]
BS 8110 Part 1. 1997. Code for practice for design and construction, Structural use of concrete, British Standards Institution.
Google Scholar
[8]
Kong D. L. Y. and Sanjayan J. G. 2008. Damage behavior of geopolymer composites exposed to elevated temperature, Cement Concrete Compos, Vol. 30, pp.986-991.
DOI: 10.1016/j.cemconcomp.2008.08.001
Google Scholar
[9]
May, I.M., Naji, J. H. & Ganaba, T. H. 1988. Displacement control for the non-linear analysis of reinforced concrete structures,. Engineering Computations, Vol. 5(4), pp.266-273.
DOI: 10.1108/eb023745
Google Scholar
[10]
Mohd Isa Jaffar, Wan Hamidon Wan Badaruzzaman, Mohd Mustafa Al Bakri Abdullah, Rafiza Abd Razak. 2015. Comparative Study Floor Flexural Behavior Of Profiled Steel Sheeting Dry Board Between Normal Concrete And Geopolymer Concrete Infill. Applied Mechanics and Materials Vols. 754-755 (2015).
DOI: 10.4028/www.scientific.net/amm.754-755.364
Google Scholar
[11]
Seraji M., Wan Badaruzzaman W. H. and S.A. Osman. 2013. Membrane Action in Profiled Steel Sheeting Dry Board (PSSDB) Floor Slab System,. Journal of Engineering Science & Technology, Vol. 8, No. 1, pp.57-68.
DOI: 10.18517/ijaseit.2.2.176
Google Scholar
[12]
Shodiq, H.B.M. 2004. Performance of new profiled steel sheeting dry board floor system with concrete infill, PhD Thesis, National University of Malaysia.
Google Scholar
[13]
Vecchio, F.J. & Tang, K. 1990. Membrane action in reinforced concrete slab, Canadian Journal of Civil Engineering, Vol. 17, pp.686-697.
DOI: 10.1139/l90-082
Google Scholar
[14]
Wan Badaruzzaman, W.H., Zain, M.F.M., Shodiq, H.M., Akhand, A.M., Sahari J. 2003. Fire resistance performance of profiled steel sheet dry board (PSSDB) flooring panel system,. Building and Environment, Vol. 38, pp.907-912.
DOI: 10.1016/s0360-1323(03)00029-5
Google Scholar
[15]
Wright, H.D. & Evans, H.R. Burt, C.A. 1989. Profiled steel sheet/dry boarding composite floor,. The Structural Engineer, Vol. 67 (7), pp.114-129.
Google Scholar