Hybrid Graphene/Alumina Nanofibers for Electrodonductive Zirconia

Article Preview

Abstract:

Ceramic materials have become of high industrial importance in some applications as their properties outperform ones of metallic components. However, use of ceramics is limited due to the difficulties in shaping. Electrically conductive ceramics can be machined by Electro-Discharge Machining (EDM) irrespective of its hardness or strength. In this study, yttria stabilized zirconia (YTZP) conductive composite was produced by incorporation of the cost-effective graphene coated alumina nanofibers (ANFC) into the matrix. Almost fully dense YTZP/5 vol.% ANFC nanocomposite was obtained by spark plasma sintering (SPS) at 1250 °C with uniaxial pressure of 40 MPa. Scanning electron microscopy observation of the microstructures showed that ANFCs were homogeneously dispersed in the matrix. Addition of ANFC resulted in slightly decreased mechanical properties, but the electrical resistivity of the composite dropped 9 orders of magnitude compared to monolithic zirconia, exhibiting 1.4 Ω∙m, satisfying the required condition for the EDM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Christel, A. Meunier, M. Heller, J.P. Torre, C.N. Peille, Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia, J. Biomed. Mater. Res. 23 (1989) 45–61.

DOI: 10.1002/jbm.820230105

Google Scholar

[2] I. Hussainova, N. Voltšihhin, E. Cura, S.P. Hannula, Densification and characterization of spark plasma sintered ZrC-ZrO2 composites, Mater. Sci. Eng. A. 597 (2014) 75–81.

DOI: 10.1016/j.msea.2013.12.058

Google Scholar

[3] O. Malek, J. González-Julián, J. Vleugels, W. Vanderauwera, B. Lauwers, M. Belmonte, Carbon nanofillers for machining insulating ceramics, Mater. Today. 14 (2011) 496–501.

DOI: 10.1016/s1369-7021(11)70214-0

Google Scholar

[4] K. Hirota, Y. Takaura, M. Kato, Y. Miyamoto, Fabrication of carbon nanofiber(CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties, J. Mater. Sci. 42 (2007) 4792–4800.

DOI: 10.1007/s10853-006-0830-0

Google Scholar

[5] Y. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, et al., Preparation and electrical properties of graphene nanosheet/Al2O3 composites, Carbon N. Y. 48 (2010) 1743–1749.

DOI: 10.1016/j.carbon.2010.01.017

Google Scholar

[6] F. Inam, H. Yan, D.D. Jayaseelan, T. Peijs, M.J. Reece, Electrically conductive alumina-carbon nanocomposites prepared by Spark Plasma Sintering, J. Eur. Ceram. Soc. 30 (2010) 153–157.

DOI: 10.1016/j.jeurceramsoc.2009.05.045

Google Scholar

[7] M. Mazaheri, D. Mari, R. Schaller, G. Bonnefont, G. Fantozzi, Processing of yttria stabilized zirconia reinforced with multi-walled carbon nanotubes with attractive mechanical properties, J. Eur. Ceram. Soc. 31 (2011) 2691–2698.

DOI: 10.1016/j.jeurceramsoc.2010.11.009

Google Scholar

[8] A. Centeno, V.G. Rocha, B. Alonso, A. Fernández, C.F. Gutierrez-Gonzalez, R. Torrecillas, et al., Graphene for tough and electroconductive alumina ceramics, J. Eur. Ceram. Soc. 33 (2013) 3201–3210.

DOI: 10.1016/j.jeurceramsoc.2013.07.007

Google Scholar

[9] J. Yi, T. Wang, Z. Xie, W. Xue, Zirconia-based nanocomposite toughened by functionalized multi-wall carbon nanotubes, J. Alloys Compd. 581 (2013) 452–458.

DOI: 10.1016/j.jallcom.2013.06.169

Google Scholar

[10] I. Hussainova, M. Drozdova, M. Aghayan, R. Ivanov, D. Pérez-Coll, Graphene Covered Alumina Nanofibers as Toughening Agent in Alumina Ceramics, Adv. Sci. Technol. 88 (2014) 49–53.

DOI: 10.4028/www.scientific.net/ast.88.49

Google Scholar

[11] N. Garmendia, I. Santacruz, R. Moreno, I. Obieta, Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing, J. Mater. Sci. Mater. Med. 21 (2010) 1445–1451.

DOI: 10.1007/s10856-010-4023-7

Google Scholar

[12] M. Mazaheri, D. Mari, Z.R. Hesabi, R. Schaller, G. Fantozzi, Multi-walled carbon nanotube/nanostructured zirconia composites: Outstanding mechanical properties in a wide range of temperature, Compos. Sci. Technol. 71 (2011) 939–945.

DOI: 10.1016/j.compscitech.2011.01.017

Google Scholar

[13] J. Sun, L. Gao, M. Iwasa, T. Nakayama, K. Niihara, Failure investigation of carbon nanotube/3Y-TZP nanocomposites, Ceram. Int. 31 (2005) 1131–1134.

DOI: 10.1016/j.ceramint.2004.11.010

Google Scholar

[14] S.L. Shi, J. Liang, Effect of multiwall carbon nanotubes on electrical and dielectric properties of yttria-stabilized zirconia ceramic, J. Am. Ceram. Soc. 89 (2006) 3533–3535.

DOI: 10.1111/j.1551-2916.2006.01232.x

Google Scholar

[15] N. Garmendia, S. Grandjean, J. Chevalier, L.A. Diaz, R. Torrecillas, I. Obieta, Zirconia-multiwall carbon nanotubes dense nano-composites with an unusual balance between crack and ageing resistance, J. Eur. Ceram. Soc. 31 (2011) 1009–1014.

DOI: 10.1016/j.jeurceramsoc.2010.12.029

Google Scholar

[16] T. Ukai, T. Sekino, A.T. Hirvonen, N. Tanaka, T. Kusunose, T. Nakayama, et al., Preparation and Electrical Properties of Carbon Nanotubes Dispersed Zirconia Nanocomposites, Key Eng. Mater. 317-318 (2006) 661–664.

DOI: 10.4028/www.scientific.net/kem.317-318.661

Google Scholar

[17] A. Duszová, J. Dusza, K. Tomášek, J. Morgiel, G. Blugan, J. Kuebler, Zirconia/carbon nanofiber composite, Scr. Mater. 58 (2008) 520–523.

DOI: 10.1016/j.scriptamat.2007.11.002

Google Scholar

[18] J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, et al., Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites, J. Eur. Ceram. Soc. 29 (2009) 3177–3184.

DOI: 10.1016/j.jeurceramsoc.2009.05.030

Google Scholar

[19] J. Shin, S. Hong, Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics, J. Eur. Ceram. Soc. 34 (2013) 1297–1302.

DOI: 10.1016/j.jeurceramsoc.2013.11.034

Google Scholar

[20] M. Suárez, A. Fernández, J. Menéndez, Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, in: B. Ertuğ (Ed. ), Sinter. Appl., InTech, 2013: p.319.

Google Scholar

[21] M. Aghayan, I. Hussainova, M. Gasik, M. Kutuzov, M. Friman, Coupled thermal analysis of novel alumina nanofibers with ultrahigh aspect ratio, Thermochim. Acta. 574 (2013) 140–144.

DOI: 10.1016/j.tca.2013.10.010

Google Scholar

[22] I. Hussainova, R. Ivanov, S.N. Stamatin, I. V. Anoshkin, E.M. Skou, A.G. Nasibulin, A few-layered graphene on alumina nanofibers for electrochemical energy conversion, Carbon N. Y. 88 (2015) 157–164.

DOI: 10.1016/j.carbon.2015.03.004

Google Scholar

[23] A. Borrell, V.G. Rocha, R. Torrecillas, A. Fernández, Improvement of carbon nanofibers/ZrO 2 composites properties with a zirconia nanocoating on carbon nanofibers by sol-gel method, J. Am. Ceram. Soc. 94 (2011) 2048–(2052).

DOI: 10.1111/j.1551-2916.2010.04354.x

Google Scholar

[24] F.J. Paneto, J.L. Pereira, J.O. Lima, E.J. Jesus, L. a. Silva, E. Sousa Lima, et al., Effect of porosity on hardness of Al2O3–Y3Al5O12 ceramic composite, Int. J. Refract. Met. Hard Mater. 48 (2015) 365–368.

DOI: 10.1016/j.ijrmhm.2014.09.010

Google Scholar

[25] I. Hussainova, M. Drozdova, D. Pérez-Coll, M. Aghayan, R. Ivanov, M.A. Rodríguez, A novel approach to electroconductive ceramics filled by graphene covered nanofibers, RSC Adv., Submitted. (2015).

DOI: 10.1016/j.matdes.2015.10.148

Google Scholar