[1]
P. Christel, A. Meunier, M. Heller, J.P. Torre, C.N. Peille, Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia, J. Biomed. Mater. Res. 23 (1989) 45–61.
DOI: 10.1002/jbm.820230105
Google Scholar
[2]
I. Hussainova, N. Voltšihhin, E. Cura, S.P. Hannula, Densification and characterization of spark plasma sintered ZrC-ZrO2 composites, Mater. Sci. Eng. A. 597 (2014) 75–81.
DOI: 10.1016/j.msea.2013.12.058
Google Scholar
[3]
O. Malek, J. González-Julián, J. Vleugels, W. Vanderauwera, B. Lauwers, M. Belmonte, Carbon nanofillers for machining insulating ceramics, Mater. Today. 14 (2011) 496–501.
DOI: 10.1016/s1369-7021(11)70214-0
Google Scholar
[4]
K. Hirota, Y. Takaura, M. Kato, Y. Miyamoto, Fabrication of carbon nanofiber(CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties, J. Mater. Sci. 42 (2007) 4792–4800.
DOI: 10.1007/s10853-006-0830-0
Google Scholar
[5]
Y. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, et al., Preparation and electrical properties of graphene nanosheet/Al2O3 composites, Carbon N. Y. 48 (2010) 1743–1749.
DOI: 10.1016/j.carbon.2010.01.017
Google Scholar
[6]
F. Inam, H. Yan, D.D. Jayaseelan, T. Peijs, M.J. Reece, Electrically conductive alumina-carbon nanocomposites prepared by Spark Plasma Sintering, J. Eur. Ceram. Soc. 30 (2010) 153–157.
DOI: 10.1016/j.jeurceramsoc.2009.05.045
Google Scholar
[7]
M. Mazaheri, D. Mari, R. Schaller, G. Bonnefont, G. Fantozzi, Processing of yttria stabilized zirconia reinforced with multi-walled carbon nanotubes with attractive mechanical properties, J. Eur. Ceram. Soc. 31 (2011) 2691–2698.
DOI: 10.1016/j.jeurceramsoc.2010.11.009
Google Scholar
[8]
A. Centeno, V.G. Rocha, B. Alonso, A. Fernández, C.F. Gutierrez-Gonzalez, R. Torrecillas, et al., Graphene for tough and electroconductive alumina ceramics, J. Eur. Ceram. Soc. 33 (2013) 3201–3210.
DOI: 10.1016/j.jeurceramsoc.2013.07.007
Google Scholar
[9]
J. Yi, T. Wang, Z. Xie, W. Xue, Zirconia-based nanocomposite toughened by functionalized multi-wall carbon nanotubes, J. Alloys Compd. 581 (2013) 452–458.
DOI: 10.1016/j.jallcom.2013.06.169
Google Scholar
[10]
I. Hussainova, M. Drozdova, M. Aghayan, R. Ivanov, D. Pérez-Coll, Graphene Covered Alumina Nanofibers as Toughening Agent in Alumina Ceramics, Adv. Sci. Technol. 88 (2014) 49–53.
DOI: 10.4028/www.scientific.net/ast.88.49
Google Scholar
[11]
N. Garmendia, I. Santacruz, R. Moreno, I. Obieta, Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing, J. Mater. Sci. Mater. Med. 21 (2010) 1445–1451.
DOI: 10.1007/s10856-010-4023-7
Google Scholar
[12]
M. Mazaheri, D. Mari, Z.R. Hesabi, R. Schaller, G. Fantozzi, Multi-walled carbon nanotube/nanostructured zirconia composites: Outstanding mechanical properties in a wide range of temperature, Compos. Sci. Technol. 71 (2011) 939–945.
DOI: 10.1016/j.compscitech.2011.01.017
Google Scholar
[13]
J. Sun, L. Gao, M. Iwasa, T. Nakayama, K. Niihara, Failure investigation of carbon nanotube/3Y-TZP nanocomposites, Ceram. Int. 31 (2005) 1131–1134.
DOI: 10.1016/j.ceramint.2004.11.010
Google Scholar
[14]
S.L. Shi, J. Liang, Effect of multiwall carbon nanotubes on electrical and dielectric properties of yttria-stabilized zirconia ceramic, J. Am. Ceram. Soc. 89 (2006) 3533–3535.
DOI: 10.1111/j.1551-2916.2006.01232.x
Google Scholar
[15]
N. Garmendia, S. Grandjean, J. Chevalier, L.A. Diaz, R. Torrecillas, I. Obieta, Zirconia-multiwall carbon nanotubes dense nano-composites with an unusual balance between crack and ageing resistance, J. Eur. Ceram. Soc. 31 (2011) 1009–1014.
DOI: 10.1016/j.jeurceramsoc.2010.12.029
Google Scholar
[16]
T. Ukai, T. Sekino, A.T. Hirvonen, N. Tanaka, T. Kusunose, T. Nakayama, et al., Preparation and Electrical Properties of Carbon Nanotubes Dispersed Zirconia Nanocomposites, Key Eng. Mater. 317-318 (2006) 661–664.
DOI: 10.4028/www.scientific.net/kem.317-318.661
Google Scholar
[17]
A. Duszová, J. Dusza, K. Tomášek, J. Morgiel, G. Blugan, J. Kuebler, Zirconia/carbon nanofiber composite, Scr. Mater. 58 (2008) 520–523.
DOI: 10.1016/j.scriptamat.2007.11.002
Google Scholar
[18]
J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, et al., Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites, J. Eur. Ceram. Soc. 29 (2009) 3177–3184.
DOI: 10.1016/j.jeurceramsoc.2009.05.030
Google Scholar
[19]
J. Shin, S. Hong, Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics, J. Eur. Ceram. Soc. 34 (2013) 1297–1302.
DOI: 10.1016/j.jeurceramsoc.2013.11.034
Google Scholar
[20]
M. Suárez, A. Fernández, J. Menéndez, Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, in: B. Ertuğ (Ed. ), Sinter. Appl., InTech, 2013: p.319.
Google Scholar
[21]
M. Aghayan, I. Hussainova, M. Gasik, M. Kutuzov, M. Friman, Coupled thermal analysis of novel alumina nanofibers with ultrahigh aspect ratio, Thermochim. Acta. 574 (2013) 140–144.
DOI: 10.1016/j.tca.2013.10.010
Google Scholar
[22]
I. Hussainova, R. Ivanov, S.N. Stamatin, I. V. Anoshkin, E.M. Skou, A.G. Nasibulin, A few-layered graphene on alumina nanofibers for electrochemical energy conversion, Carbon N. Y. 88 (2015) 157–164.
DOI: 10.1016/j.carbon.2015.03.004
Google Scholar
[23]
A. Borrell, V.G. Rocha, R. Torrecillas, A. Fernández, Improvement of carbon nanofibers/ZrO 2 composites properties with a zirconia nanocoating on carbon nanofibers by sol-gel method, J. Am. Ceram. Soc. 94 (2011) 2048–(2052).
DOI: 10.1111/j.1551-2916.2010.04354.x
Google Scholar
[24]
F.J. Paneto, J.L. Pereira, J.O. Lima, E.J. Jesus, L. a. Silva, E. Sousa Lima, et al., Effect of porosity on hardness of Al2O3–Y3Al5O12 ceramic composite, Int. J. Refract. Met. Hard Mater. 48 (2015) 365–368.
DOI: 10.1016/j.ijrmhm.2014.09.010
Google Scholar
[25]
I. Hussainova, M. Drozdova, D. Pérez-Coll, M. Aghayan, R. Ivanov, M.A. Rodríguez, A novel approach to electroconductive ceramics filled by graphene covered nanofibers, RSC Adv., Submitted. (2015).
DOI: 10.1016/j.matdes.2015.10.148
Google Scholar