[1]
A. Fritz, V. Pitchon, The current state of research on automotive lean NOx catalysis, Applied Catalysis B: Environmental, 13 (1) (1997), 1-25.
DOI: 10.1016/s0926-3373(96)00102-6
Google Scholar
[2]
H. Fang, L. Haibin, Z. Zengli, Advancements in Development of Chemical-Looping Combustion: A Review, Intern. J. Chem. Eng., 2009 (2009), Article ID 710515, 16 pages.
DOI: 10.1155/2009/710515
Google Scholar
[3]
T. Mattisson, E. Jerndal, C. Linderholm, A. Lyngfelt, Reactivity of a spray-dried NiO/NiAl2O4 oxygen carrier for chemical-looping combustion, Chem. Eng. Sci., 66 (2011) 4636-4644.
DOI: 10.1016/j.ces.2011.06.025
Google Scholar
[4]
N. Salhi, A. Boulahouache, C. Petit, A. Kiennemann, C. Rabia, Steam reforming of methane to syngas over NiAl2O4 spinel catalysts, Int. J. Hydrogen Energy, 36 (2011) 1433-1439.
DOI: 10.1016/j.ijhydene.2010.11.071
Google Scholar
[5]
J. Mary Fisher, T. Ian Hyde, D. Thompsett, Manganese containing oxygen storage component comprising three-way catalyst composition, U.S. Patent 7, 396, 516 B2, (2001).
Google Scholar
[6]
J.C. González, J.M. Benito López, M.A. Rodríguez Barbero, I. Rodríguez Ramos, A. Guerrero Ruiz, Development of Nanostructured Catalytic Membranes (NCMs) for Partial Benzene Hydrogenation to Cyclohexene, J. Nanosci. & Nanotech., 7 (2007) 1-11.
DOI: 10.1166/jnn.2007.903
Google Scholar
[7]
M.K. Nazemi, S. Sheibani, F. Rashchi, V.M. Gonzalez-DelaCruz, A. Caballero, Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis, Advanced Powder Technology 23 (2012) 833–838.
DOI: 10.1016/j.apt.2011.11.004
Google Scholar
[8]
Ch. Zhao, Y. Guo, X. Cang, Preparation method of NiAl2O4 nano-powder, CN Patent 101580279B, (2011).
Google Scholar
[9]
N. Xiaoshan, S. Tao, Ch. Kexin, Burning synthesis method of NiAl2O4 spinelle powder, CN Patent 1556031A, (2004).
Google Scholar
[10]
S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials, Current Opinion in Solid State and Materials Science, 12 (2008) 44-50.
DOI: 10.1016/j.cossms.2008.12.002
Google Scholar
[11]
M. Aghayan, N. Voltsihhin, M.A. Rodriguez, F.R. Marcos, M. Dong, I. Hussainova, Functionalization of gamma-alumina nanofibers by alpha-alumina via solution combustion synthesis. Ceramics International, 40, 8A (2014) 12603–12607.
DOI: 10.1016/j.ceramint.2014.04.087
Google Scholar
[12]
S.S. Kim, G. -J. Sun, H.W. Kim, Y.J. Kwon, P. Wu, Thermochemical analysis on the growth of NiAl2O4 rods, RSC Adv., 4 (2014) 1159–1162.
DOI: 10.1039/c3ra43196g
Google Scholar
[13]
M. Aghayan, I. Hussainova, M. Gasik, M. Kutuzov, M. Friman, Coupled thermal analysis of novel alumina nanofibers with ultrahigh aspect ratio, Thermochimica Acta, 574 (2013) 140–144.
DOI: 10.1016/j.tca.2013.10.010
Google Scholar
[14]
Y.S. Han, J.B. Li, X.S. Ning, X.Z. Yang, B. Chi, Study on NiO excess in preparing NiAl2O4 Mater. Sci. Eng., A369 (2004) 241–244.
DOI: 10.1016/j.msea.2003.11.026
Google Scholar
[15]
N.A.S. Nogueira, E.B. Silva, P.M. Jardim, J.M. Sasaki, Synthesis and characterization of NiAl2O4 nanoparticles obtained through gelatin, Mater. Lett., 61 (2007) 4743–4746.
DOI: 10.1016/j.matlet.2007.03.042
Google Scholar
[16]
A. Huczko, M. Bystrzejewski, H. Lange, A. Fabianowska, S. Cudziło, A. Panas, M. Szala, Combustion synthesis as a novel method for production of 1-D SiC nanostructures, J. Phys. Chem. B 109 (2005) 16244-16251.
DOI: 10.1021/jp050837m
Google Scholar