[1]
A. El-Morsy, A. Ismail, M. Waly, Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes, Mat. Sci. Eng. A, 486 (2008) 528-533.
DOI: 10.1016/j.msea.2007.09.044
Google Scholar
[2]
R.M. Wang, A. Eliezer, E.M. Gutman, Microstructure and dislocations in the stressed AZ91D magnesium alloys, Mat. Sci. Eng. A, 344, 1–2 (2003) 279–287.
DOI: 10.1016/s0921-5093(02)00413-6
Google Scholar
[3]
P. Lukáč, Z. Trojanová, Deformation and damping behaviours of microcrystalline Mg reinforced with ceramic nanoparticles, Kovove Mater. 44, 5 (2006) 243-249.
Google Scholar
[4]
S. -J. Huang, C. -R. LI, K. -L. YAN, Particle reinforcement of magnesium composites SiCp/AZ80 and their mechanical properties after heat treatment, Metal Mater. 51, 1 (2013) 45–52.
DOI: 10.4149/km_2013_1_45
Google Scholar
[5]
J.Y. Choi, W.J. Kim, Significant effects of adding trace amounts of Ti on the microstructure and corrosion properties of Mg–6Al–1Zn magnesium alloy, J. Alloys and Comp. 614, 25 (2014) 49-55.
DOI: 10.1016/j.jallcom.2014.06.052
Google Scholar
[6]
Po. Chou. Lin, S.J. Huang, P.S. Hong, Formation of Magnesium Metal Matrix Komposites Al2O3 P/AZ91D and their Mechanical Properties after Heat Treatment, Acta Metall. Slovaca 16, 4 (2010) 237-245.
Google Scholar
[7]
Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, An investigation of microstructural evolution during equal-channel angular pressing, Acta Mater. 45, 11 (1997) 4733-4741.
DOI: 10.1016/s1359-6454(97)00100-6
Google Scholar
[8]
Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing, Acta Mater. 46, 9 (1998) 3317-3331.
DOI: 10.1016/s1359-6454(97)00494-1
Google Scholar
[9]
RZ Valiev, TG Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mat. Sci. 51, 7 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[10]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[11]
M. Besterci, J. Ivan, Failure mechanism of dispersion strengthened Al-Al4C3 systems, J. of Mater. Sci. Lett. 15 (1996) 2071-(2074).
DOI: 10.1007/bf00278625
Google Scholar
[12]
M. Besterci, J. Ivan, The Mechanism of the Failure of the Dispersion-strengthened Cu–Al2O3 System, J. of Mater. Sci. Lett. 17 (1998) 773-776.
Google Scholar
[13]
M. Besterci, J. Ivan, L. Kováč, Influence of Al2O3 particles volume fraction on fracture mechanism in the Cu–Al2O3 system, Mat. Letters 46 (2000) 181-184.
DOI: 10.1016/s0167-577x(00)00164-6
Google Scholar
[14]
M. Besterci, J. Ivan, L. Kováč, T. Weissgaerber, C. Sauer, Strain and fracture mechanism of Cu–TiC, Mat. Letters 38 (1999) 270-274.
DOI: 10.1016/s0167-577x(98)00171-2
Google Scholar
[15]
A. Mocellin, F. Fougerest, P. F.J. Gobin, A study of damage under tensile loading in a new Al-Si-Fe alloy processed by the Osprey route, Mater. Sci. 28 (1993) 4855-4861.
DOI: 10.1007/bf00361147
Google Scholar
[16]
L.V. Broutman, R.H. Krock, Analysis of deformation of Al-Si system, Compos. Mater. 5 (1974) 27.
Google Scholar
[17]
O. Velgosová, M. Besterci, J. Ivan, K. Sülleiová, Influence of technological factors on dispersion strengthened materials deformation mechanism studied by in situ tensile test in SEM, Int. J. Mat. Prod. Technol. 49, 2/3 (2014) 129-159.
DOI: 10.1504/ijmpt.2014.064037
Google Scholar
[18]
M. Besterci, O. Velgosová, J. Ivan, T. Kvačkaj The mechanism of the failure of the dispersion-strengthened Cu-Al2O3 nanosystem, J. Mat. Sci. 45 (2010), 4073-4077.
DOI: 10.1007/s10853-010-4493-5
Google Scholar
[19]
M. -X. Zhang, P.M. Kelly, Crystallography of Mg17Al12 precipitates in AZ91D alloy, Scripta Materialia, 48 (2003) 647–652.
DOI: 10.1016/s1359-6462(02)00555-9
Google Scholar
[20]
C.J. Bettles, The effect of gold additions on the ageing behaviour and creep properties of the magnesium alloy AZ91E, Mat. Sci. and Engineering A, 348 (2003) 280-288.
DOI: 10.1016/s0921-5093(02)00731-1
Google Scholar
[21]
R.M. Wang, A. Eliezer, E.M. Gutman, An investigation on the microstructure of an AM50 magnesium alloy, Mat. Sci. and Engineering A, 355, 1-2, (2003) 201–207.
DOI: 10.1016/s0921-5093(03)00065-0
Google Scholar
[22]
S. -J. Huang, P. -C. Lin, Grain refinement of AM60/Al2O3p magnesium metal matrix composites processed by ECAE, Kovove Mater. 51, 6 (2013) 357 – 366.
DOI: 10.4149/km_2013_6_357
Google Scholar
[23]
M. Habibnejad-Korayem, R. Mahmudi, W.J. Poole, Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles, Mat. Sci. and Engineering: A, 519 (2009) 198-203.
DOI: 10.1016/j.msea.2009.05.001
Google Scholar
[24]
M. Besterci, J. Ivan, S. J. Huang, O. Velgosová, B.Z. Lin, P. Hvizdoš, Damage mechanism of AZ61-F Mg alloy with nano-Al2O3 particles, Metal Mater. 49 (2011), 451-455.
DOI: 10.4149/km_2011_6_451
Google Scholar
[25]
E. A. Brandes, G. B. Brook, Smithells Metals Reference Book. 7th Ed. Butterworth-Heinemann Ltd. (1998).
Google Scholar