Fracture Description of AZ61 Mg-Al2O3 Materials Studied by “In Situ Tensile Test in SEM“

Article Preview

Abstract:

In situ observation of AZ61 Mg alloy with 5 wt. % of Al2O3 in the SEM was performed to study influence of the weight fraction of Al2O3 particles on the deformation and fracture description during the tensile test. Structure of the experimental materials was also analysed; microstructures were heterogeneous, with randomly distributed globular Al2O3 particles (average diameter of 25 nm) and Mg17Al12 intermetallic phase (average diameter of 0.4 mm). It was shown that during the tensile deformation the failure of Mg17Al12 particles and decohesion of the matrix-Al2O3 particles interphase boundary started simultaneously. Decohesion resulted from the different physical properties of matrix and Al2O3 particles. The influence of the Al2O3 weight fraction on the final fracture was evident; for the material with 5 wt. % of Al2O3, the fracture surface was approximately perpendicular to the loading direction. The fracture surface had transcrystalline ductile character.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-172

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. El-Morsy, A. Ismail, M. Waly, Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes, Mat. Sci. Eng. A, 486 (2008) 528-533.

DOI: 10.1016/j.msea.2007.09.044

Google Scholar

[2] R.M. Wang, A. Eliezer, E.M. Gutman, Microstructure and dislocations in the stressed AZ91D magnesium alloys, Mat. Sci. Eng. A, 344, 1–2 (2003) 279–287.

DOI: 10.1016/s0921-5093(02)00413-6

Google Scholar

[3] P. Lukáč, Z. Trojanová, Deformation and damping behaviours of microcrystalline Mg reinforced with ceramic nanoparticles, Kovove Mater. 44, 5 (2006) 243-249.

Google Scholar

[4] S. -J. Huang, C. -R. LI, K. -L. YAN, Particle reinforcement of magnesium composites SiCp/AZ80 and their mechanical properties after heat treatment, Metal Mater. 51, 1 (2013) 45–52.

DOI: 10.4149/km_2013_1_45

Google Scholar

[5] J.Y. Choi, W.J. Kim, Significant effects of adding trace amounts of Ti on the microstructure and corrosion properties of Mg–6Al–1Zn magnesium alloy, J. Alloys and Comp. 614, 25 (2014) 49-55.

DOI: 10.1016/j.jallcom.2014.06.052

Google Scholar

[6] Po. Chou. Lin, S.J. Huang, P.S. Hong, Formation of Magnesium Metal Matrix Komposites Al2O3 P/AZ91D and their Mechanical Properties after Heat Treatment, Acta Metall. Slovaca 16, 4 (2010) 237-245.

Google Scholar

[7] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, An investigation of microstructural evolution during equal-channel angular pressing, Acta Mater. 45, 11 (1997) 4733-4741.

DOI: 10.1016/s1359-6454(97)00100-6

Google Scholar

[8] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing, Acta Mater. 46, 9 (1998) 3317-3331.

DOI: 10.1016/s1359-6454(97)00494-1

Google Scholar

[9] RZ Valiev, TG Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mat. Sci. 51, 7 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[10] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[11] M. Besterci, J. Ivan, Failure mechanism of dispersion strengthened Al-Al4C3 systems, J. of Mater. Sci. Lett. 15 (1996) 2071-(2074).

DOI: 10.1007/bf00278625

Google Scholar

[12] M. Besterci, J. Ivan, The Mechanism of the Failure of the Dispersion-strengthened Cu–Al2O3 System, J. of Mater. Sci. Lett. 17 (1998) 773-776.

Google Scholar

[13] M. Besterci, J. Ivan, L. Kováč, Influence of Al2O3 particles volume fraction on fracture mechanism in the Cu–Al2O3 system, Mat. Letters 46 (2000) 181-184.

DOI: 10.1016/s0167-577x(00)00164-6

Google Scholar

[14] M. Besterci, J. Ivan, L. Kováč, T. Weissgaerber, C. Sauer, Strain and fracture mechanism of Cu–TiC, Mat. Letters 38 (1999) 270-274.

DOI: 10.1016/s0167-577x(98)00171-2

Google Scholar

[15] A. Mocellin, F. Fougerest, P. F.J. Gobin, A study of damage under tensile loading in a new Al-Si-Fe alloy processed by the Osprey route, Mater. Sci. 28 (1993) 4855-4861.

DOI: 10.1007/bf00361147

Google Scholar

[16] L.V. Broutman, R.H. Krock, Analysis of deformation of Al-Si system, Compos. Mater. 5 (1974) 27.

Google Scholar

[17] O. Velgosová, M. Besterci, J. Ivan, K. Sülleiová, Influence of technological factors on dispersion strengthened materials deformation mechanism studied by in situ tensile test in SEM, Int. J. Mat. Prod. Technol. 49, 2/3 (2014) 129-159.

DOI: 10.1504/ijmpt.2014.064037

Google Scholar

[18] M. Besterci, O. Velgosová, J. Ivan, T. Kvačkaj The mechanism of the failure of the dispersion-strengthened Cu-Al2O3 nanosystem, J. Mat. Sci. 45 (2010), 4073-4077.

DOI: 10.1007/s10853-010-4493-5

Google Scholar

[19] M. -X. Zhang, P.M. Kelly, Crystallography of Mg17Al12 precipitates in AZ91D alloy, Scripta Materialia, 48 (2003) 647–652.

DOI: 10.1016/s1359-6462(02)00555-9

Google Scholar

[20] C.J. Bettles, The effect of gold additions on the ageing behaviour and creep properties of the magnesium alloy AZ91E, Mat. Sci. and Engineering A, 348 (2003) 280-288.

DOI: 10.1016/s0921-5093(02)00731-1

Google Scholar

[21] R.M. Wang, A. Eliezer, E.M. Gutman, An investigation on the microstructure of an AM50 magnesium alloy, Mat. Sci. and Engineering A, 355, 1-2, (2003) 201–207.

DOI: 10.1016/s0921-5093(03)00065-0

Google Scholar

[22] S. -J. Huang, P. -C. Lin, Grain refinement of AM60/Al2O3p magnesium metal matrix composites processed by ECAE, Kovove Mater. 51, 6 (2013) 357 – 366.

DOI: 10.4149/km_2013_6_357

Google Scholar

[23] M. Habibnejad-Korayem, R. Mahmudi, W.J. Poole, Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles, Mat. Sci. and Engineering: A, 519 (2009) 198-203.

DOI: 10.1016/j.msea.2009.05.001

Google Scholar

[24] M. Besterci, J. Ivan, S. J. Huang, O. Velgosová, B.Z. Lin, P. Hvizdoš, Damage mechanism of AZ61-F Mg alloy with nano-Al2O3 particles, Metal Mater. 49 (2011), 451-455.

DOI: 10.4149/km_2011_6_451

Google Scholar

[25] E. A. Brandes, G. B. Brook, Smithells Metals Reference Book. 7th Ed. Butterworth-Heinemann Ltd. (1998).

Google Scholar