[1]
F. Monticelli, Dental materials and their clinical application, PhD Thesis, (2005).
Google Scholar
[2]
M.E.R. Shanahan, C. Bourgès-Monnier, Effects of plasma treatment on the adhesion of an epoxy composite, Int. J. Adh. Adh. 16 (1996) 129-135.
DOI: 10.1016/0143-7496(95)00028-3
Google Scholar
[3]
C. Goracci, O. Raffaelli, F. Monticelli, B. Balleri, E. Bertelli, M. Ferrari, The adhesion between prefabricated FRC posts and composite resin cores: microtensile bond strength with and without post-silanization, Dent. Mater. 21 (2005) 437-444.
DOI: 10.1016/j.dental.2004.07.012
Google Scholar
[4]
F. Monticelli, M. Toledano, F. R. Tay, A. H. Cury, C. Goracci, M. Ferrari, Post-surface conditioning improves interfacial adhesion in post/core restorations, Dent. Mater. 22(2006)602-609.
DOI: 10.1016/j.dental.2005.05.018
Google Scholar
[5]
Q. F. Wei, W. D. Gao, D. Y. Hou, X. Q. Wang, Surface modification of polymer nanofibres by plasma treatment, Appl. Surf. Sci. 245 (2005) 16-20.
DOI: 10.1016/j.apsusc.2004.10.013
Google Scholar
[6]
P. Yavirach, P. Chaijareenont, D. Boonyawan, K. Pattamapun, S. Tunma, H. Takahashi, M. Arksornnukit, Effects of plasma treatment on the shear bond strength between fiber-reinforced composite posts and resin composite for core build-up, Dent. Mater. J. 28 (2009).
DOI: 10.4012/dmj.28.686
Google Scholar
[7]
A. R. Browning, Utilization of molecular simulations in aerospace materials: simulation of thermoset resin/graphite interactions, the 2009 AIChE Annual Meeting, (2009).
Google Scholar
[8]
X. Ma, W. Zhu, J. Xiao, H. Xiao, Molecular dynamics study of the structure and performance of simple and double bases propellants, J. Hazard. Mater. 156 (2008) 201-207.
DOI: 10.1016/j.jhazmat.2007.12.068
Google Scholar
[9]
W. Sangprasert, P. Nimmanpipug, P. Yavirach, V.S. Lee, D. Boonyawan, Epoxy resin surface fucntionalization using atmospheric pressure plasma jet treatment, JJAP. 51 (2012) 01AJ04.
DOI: 10.1143/jjap.51.01aj04
Google Scholar
[10]
Materials Studio Release 5. 5, (2007).
Google Scholar
[11]
N. D. Theodorou, W. U. Suter, Atomistic modeling of mechanical properties of polymeric glasses, Macromol. 19 (1986) 139-154.
DOI: 10.1021/ma00155a022
Google Scholar
[12]
A. J. Wagner, D. H. Fairbrother, F. Reniers, A comparison of PE surfaces modified by plasma generated neutral nitrogen species and nitrogen ions, Plasmas Polym. 8 (2003)119-134.
Google Scholar
[13]
S. Alvarez-Blanco, S. Manolache, F. Denes, A novel plasma-enhanced way for surface functionalization of polymeric substrates, Polym. Bull. 47 (2001) 329-336.
DOI: 10.1007/s289-001-8189-4
Google Scholar
[14]
http: /www. matbase. com/material/polymers/commodity/hdpe/properties (August 4, 2011).
Google Scholar
[15]
Performance Pipe: A Division of Chevron Phillips Chemical Company LP, (2003).
Google Scholar
[16]
http: /www. ualberta. ca/~rj/phd-thesis/properties. html (August 4, 2011).
Google Scholar
[17]
T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, M.V. Otugen, V. Sheverev, A micro-optical force sensor concept based on whispering gallery mode resonators, Appl. Opt. 47(2008) 3009-3014.
DOI: 10.1364/ao.47.003009
Google Scholar
[18]
I. Sideridou, V. Tserki, G. Papanastasiou, Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins, Biomaterials 24 (2003) 655-665.
DOI: 10.1016/s0142-9612(01)00308-8
Google Scholar
[19]
G. Yang, S.Y. Fu, J.P. Yang, Cryogenic mechanical behaviors of epoxy resin modified by flexible diamine, Polymer (2007) 302-310.
Google Scholar
[20]
M.C. Dubourg, A. Chateauminois, B. Villechaise, In situ analysis and modeling of crack initiation within model fretting contacts using polymer materials, Tribol. Int. 36 (2003) 109-119.
DOI: 10.1016/s0301-679x(02)00137-8
Google Scholar