[1]
Holčapek, O., Reiterman, P., Konvalinka, P., Mechanical and rheological properties of aluminous cement under high temperatures, Advanced Materials Research 982 (2014) 141-144.
DOI: 10.4028/www.scientific.net/amr.982.141
Google Scholar
[2]
Persson, B. A., comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete, Cement and Concrete Research 31 (2001) 193-198.
DOI: 10.1016/s0008-8846(00)00497-x
Google Scholar
[3]
Holčapek, O., Reiterman, P., Konvalinka, P., Fracture characteristics of refractory composites containing metakaolin and ceramic fibers, Advances in Mechanical Engineering 7(3) (2015) 1-13.
DOI: 10.1177/1687814015573619
Google Scholar
[4]
Vejmelková, E., Pavlíková, M., Keppert, M., Keršner, Z., Rovnaníková, P., Ondráček, M., Sedlmajer, M., Černý, R., High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics, Construction and Building Materials 24 (2010).
DOI: 10.1016/j.conbuildmat.2010.01.017
Google Scholar
[5]
Vejmelková, E., Pavlíková, M., Keršner, Z., Rovnaníková, P., Ondráček, M., Sedlmajer, M., Černý R., High performance concrete containing lower slag amount: A complex view of mechanical and durability properties, Construction and Building Materials 23(6) (2009).
DOI: 10.1016/j.conbuildmat.2008.11.018
Google Scholar
[6]
Testing of hardened concrete – Part 3: Compressive strength. Prague: Czech Standardization Institute; 2002. ČSN EN 12390-3.
Google Scholar
[7]
ČSN 72 7031: Determination of water vapour diffusion coefficient of building materials by method without temperature gradient, (2001).
Google Scholar