[1]
C. Edvardsen, Water Penetrability and Autogenous Healing of Separation Cracks in Concrete, Betonwerk und Fertigteil-Technik. 62(11) (1996) 77-85.
Google Scholar
[2]
V. Rahhal, V. Bonavetti, A. Delgado, C. Pedrajas, R. Talero, Scheme of the Portland cement hydration with crystalline mineral admixtures and other aspects, Silicates Industriels. 74(11) (2009) 347-352.
Google Scholar
[3]
V.T. N Dao, P.F. Dux, P.H. Morris, A.H. Carse, Performance of permeability-reducing admixtures in marine concrete structures, ACI Materials Journal. 107(3) (2010).
DOI: 10.14359/51663758
Google Scholar
[4]
F. Klouda, The Capri South Beach fully protected with crystalline waterproofing-admixture-treated concrete, Concrete Engineering International. 14(4) (2008) 59-60.
Google Scholar
[5]
P. Reiterman, V. Bäumelt, Long-term sorption properties of mortars modified by crystallizing admixture, Advanced Materials Research. 1054 (2014) 71-74.
DOI: 10.4028/www.scientific.net/amr.1054.71
Google Scholar
[6]
K. Wang, T. Hu, S. Xu, Influence of permeated crystalline waterproof materials on impermeability of concrete, Advanced Materials Research. 446-449 (2012) 954-960.
DOI: 10.4028/scientific5/amr.446-449.954
Google Scholar
[7]
Š. Bohuš, R. Drochytka, Cement based material with crystal-growth ability under long term aggressive medium impact, Applied Mechanics and Materials. 166-169 (2012) 1773-1778.
DOI: 10.4028/www.scientific.net/amm.166-169.1773
Google Scholar
[8]
W. Jianxin, G.L. Liping, Influence of Shenkebao permeable crystalline admixture on concrete resistance to chemical corrosion and freeze-thaw cycles, Jiangsu Building Materials. 2 (2010).
Google Scholar
[9]
EN 12390-8 Testing hardened concrete - Part 8: Depth of penetration of water under pressure. (2009).
Google Scholar
[10]
J.C.Z. Piaia, M. Cheriaf, J.C. Rocha, N.L. Mustelier, Measurements of water penetration and leakage in masonry wall: Experimental results and numerical simulation, Building and Environment. 61 (2013) 18-26.
DOI: 10.1016/j.buildenv.2012.11.017
Google Scholar
[11]
H. Janssen, H. Derluyn, J. Carmeliet, Moisture transfer through mortar joints: A sharp-front analysis, Cement and Concrete Research. 42(8) (2012) 1105-1112.
DOI: 10.1016/j.cemconres.2012.05.004
Google Scholar
[12]
H. M. Künzel, Simultaneous Heat and moisture transport in building components, Frauenhofer IRB Verlag, Stuttgart, (1995).
Google Scholar
[13]
J. Sýkora, T. Krejčí, J. Kruis, M. Šejnoha, Computational homogenization of non-stationary transport processes in masonry structures, Journal of Computational and Applied Mathematics. 236(18) (2012) 4745-4755.
DOI: 10.1016/j.cam.2012.02.031
Google Scholar
[14]
D. D'Agostino, Moisture dynamics in an historical masonry structure: The Cathedral of Lecce (South Italy), Building and Environment, 63 (2013) 122-133.
DOI: 10.1016/j.buildenv.2013.02.008
Google Scholar
[15]
J. Witzany, R. Zigler, Failure mechanism of compressed reinforced and non-reinforced stone columns, Materials and Structures. 48(5) (2015) 1603-1613.
DOI: 10.1617/s11527-014-0257-z
Google Scholar
[16]
M. Jiránek, Sub-slab depressurisation systems used in the Czech Republic and verification of their efficiency, Radiation Protection Dosimetry, 162(1-2) (2014) 64-67.
DOI: 10.1093/rpd/ncu219
Google Scholar
[17]
ČSN P 73 0610 Hydroizolace staveb - Sanace vlhkého zdiva. (2000) [in Czech].
Google Scholar
[18]
J. Pazderka, Czech Utility model CZ25990 (U1). (2013).
Google Scholar