Influence of Moisture Content on the Thermal Properties of Concrete Containing Agricultural Waste Materials

Article Preview

Abstract:

This article deals with concrete containing waste material originating in a coir fibres extraction from outer protective peel of a coconut. Coir pith is used as cement replacement in amount of 5% and 10%. The influence of moisture content on the thermal properties of studied concrete is determined by means of experimental measurements of basic physical properties, hygric transport parameters and thermal characteristics. From achieved results it can be concluded, that the higher amount of coir pith is used, the better values of thermal characteristics material show. But at the same time thermal characteristics are more influenced by moisture content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-245

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Vejmelková, D. Koňáková, T. Kulovaná, M. Keppert, J. Žumár, P. Rovnaníková, Z. Keršner, M. Sedlmajer, R. Černý, Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance, Cement & Concrete Composites 55 (2015).

DOI: 10.1016/j.cemconcomp.2014.09.013

Google Scholar

[2] D. Koňáková, V. Hovorková, E. Vejmelková, M. Keppert, R. Černý, Influence of Metashale as Cement Replacement on the Hygric Transport Properties of Concrete, Advanced Materials Research 1054 (2014) 188-193.

DOI: 10.4028/www.scientific.net/amr.1054.188

Google Scholar

[3] O. Holčapek, P. Reiterman, P. Konvalinka, Comparison of Refractory and Non-refractory Components in Cement Composites after High Temperatures Load, Advanced Materials Research 1054 (2014) 33-36.

DOI: 10.4028/www.scientific.net/amr.1054.33

Google Scholar

[4] E. Vejmelková, D. Koňáková, T. Kulovaná, A. Hubáček, R. Černý, Mechanical and Thermal Properties of Moderate-strength Concrete with Ceramic Powder Used as Supplementary Cementitious Material, Advanced Materials Research 1054 (2014) 194-198.

DOI: 10.4028/www.scientific.net/amr.1054.194

Google Scholar

[5] P. Reiterman, O. Holčapek, M. Jogl, P. Konvalinka, Physical and Mechanical Properties of Composites Made with Aluminous Cement and Basalt Fibers Developed for High Temperature Application, Advances in Materials Science and Engineering, Article ID 703029, (2015).

DOI: 10.1155/2015/703029

Google Scholar

[6] E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, Fly-Ash Influence on the Properties of High Performance Concrete, Cement Wapno Beton 4 (2009) 189-204.

DOI: 10.1016/j.conbuildmat.2010.01.017

Google Scholar

[7] M. Čáchová, D. Koňáková, E. Vejmelková, M. Keppert, P. Reiterman, A. Krojidlová, R. Černý, Mechanical and Thermal Properties of Composites Containing Waste Coir Pith, Advanced Materials Research 1054 (2014) 238-242.

DOI: 10.4028/www.scientific.net/amr.1054.238

Google Scholar

[8] D. Koňáková, E. Vejmelková, M. Čáchová, J. Siddique, K. Polozhiy, P. Reiterman, M. Keppert, R. Černý, Treated Coconut Coir Pith as Component of Cementitious Materials, Advances in Materials Science and Engineering, Article ID 264746, (2015).

DOI: 10.1155/2015/264746

Google Scholar

[9] ČSN EN 12350-2: Testing fresh concrete - Part 2: Slump-test, Czech Standards Institution, (2009).

Google Scholar

[10] E. Vejmelková, M. Pavlíková, M. Jerman and R. Černý, Free water intake as means of material characterization, Journal of Building Physics 33 (2009) 29-44.

DOI: 10.1177/1744259109104069

Google Scholar

[11] M. K. Kumaran, Moisture diffusivity of building materials from water absorption measurements, Journal of Thermal Envelope and Building Science 22 (1999) 349-355.

DOI: 10.1177/109719639902200409

Google Scholar

[12] ČSN 72 7031: Determination of water vapour diffusion coefficient of building materials by method without temperature gradient, Czech Standards Institution, (2001).

Google Scholar

[13] Applied Precision Ltd., ISOMET 2114, User's Guide, Bratislava, (2011).

Google Scholar

[14] R. Černý a P. Rovnaníková, Transport processes in concrete, London: Spon Press, (2002).

Google Scholar