[1]
Kho Pin Verian, N.M. Whiting, J. Olek, J. Jain, and M.B. Snyder. Using recycled concrete as aggregate in concrete pavements to reduce materials cost. Technical report, Indiana Department of Transportation and Purdue University, West, (2013).
DOI: 10.5703/1288284315220
Google Scholar
[2]
M.A. Glinicki. Tendencje rozwojowe technologii betonu. Przeglad Budowlany, 78: 24-30, (2007).
Google Scholar
[3]
B. Zając and I. Gołębiowska. Ewolucja technologii recyklingu betonu. Inżynieria i Aparatura Chemiczna, 5: 134-135, (2010).
Google Scholar
[4]
B. Zając and I. Gołębiowska. Nowoczesne metody recyklingu betonu. Inżynieria i Aparatura Chemiczna, 5: 136-137, (2010).
Google Scholar
[5]
P.K. Mehta. High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the international workshop on sustainable development and concrete technology, pages 3-14, (2004).
Google Scholar
[6]
L. Czarnecki and H. Justnes. Zrównoważony, trwały beton. Cement Wapno Beton, R. 17/79, nr 6: 341-362, (2012).
Google Scholar
[7]
W. Kubissa, B. Pacewska, and I. Wilińska. Comparative investigations of some properties related to durability of cement concretes containing different fly ashes. Advanced Materials Research, 1054(1): 154-161, (2014).
DOI: 10.4028/www.scientific.net/amr.1054.154
Google Scholar
[8]
L. Czarnecki, W. Kurdowski, and S. Mindess. Future developments in concrete, in: developments in the formulation and reinforcement of concrete.
DOI: 10.1201/9781439832707.ch13
Google Scholar
[9]
K. McNeil and T. H.K. Kang. Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, (2013).
Google Scholar
[10]
RILEM TC 121-DRG. Specifications for concrete with recycled aggregates, (1994).
Google Scholar
[11]
M.N. Fardis. Innovative materials and techniques in concrete construction. Springer, (2012).
Google Scholar
[12]
P.S. Lovato, E. Possan, D.C.C.D. Molin, Â.B. Masuero, and J.L.D. Ribeiro. Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26(1): 437-447, (2012).
DOI: 10.1016/j.conbuildmat.2011.06.043
Google Scholar
[13]
B. Sadowska-Buraczewska and P. Rutkowski. Betony z użyciem kruszywa recyklingowego wysokiej wytrzymałości-dziedzina zrównoważonego rozwoju. Rocznik Ochrona Środowiska, 15(3), (2014).
Google Scholar
[14]
G. Andreu and E. Miren. Experimental analysis of properties of high performance recycled aggregate concrete. Construction and Building Materials, 52: 227-235, (2014).
DOI: 10.1016/j.conbuildmat.2013.11.054
Google Scholar
[15]
A. Ajdukiewicz and A. Kliszczewicz. Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites, 24(2): 269-279, (2002).
DOI: 10.1016/s0958-9465(01)00012-9
Google Scholar
[16]
M.A. Glinicki, M. Marks, and D. Jóźwiak-Niedźwiedzka. Automatic categorization of chloride migration into concrete modified with cfbc ash. Computers & Concrete, 9(5): 375-387, (2012).
DOI: 10.12989/cac.2012.9.5.375
Google Scholar
[17]
D. Jóźwiak-Niedźwiedzka, K. Gibas, M.A. Glinicki, and G. Nowowiejski. Szczelność betonów z popiołem lotnym wapiennym wobec wnikania mediów agresywnych. Drogi i Mosty, 11(3): 39- 61, (2011).
Google Scholar
[18]
American Concrete Institute. ACI CT-13 ACI Concrete Terminology - An ACI Standard, (2013).
Google Scholar
[19]
W. Kubissa and R. Jaskulski. Measuring and time variability of the sorptivity of concrete. Procedia Engineering, 57(0): 634 - 641, 2013. Modern Building Materials, Structures and Techniques.
DOI: 10.1016/j.proeng.2013.04.080
Google Scholar
[20]
D. Jóźwiak-Niedźwiedzka. Effect of fluidized bed combustion fly ash on the chloride resistance and scaling resistance of concrete. In Concrete in Aggressive Aqueous Environments, Performance, Testing and Modeling, 02-05 June 2009, Toulouse, France, RILEM proceedings PRO 63, vol. 2, pages 556-563, (2009).
Google Scholar