[1]
Kim J., Kim D.J., Park S.H., Zi G. Investigating the flexural resistance of the reinforced cementitious composites under biaxial condition. Composite Structures 2013: 122, pp.198-208.
DOI: 10.1016/j.compstruct.2014.11.055
Google Scholar
[2]
Mondschein P., Konvalinka A. Asphalt composites for places with higher and atypical load. Advanced Materials Research 2014: 1054, pp.64-70.
DOI: 10.4028/www.scientific.net/amr.1054.64
Google Scholar
[3]
Vogel F., Holčapek O., Konvalinka P. Study of the strength development of the cement matrix for textile reinforced concrete. Advanced Materials Research 2014: 1054, pp.99-103.
DOI: 10.4028/www.scientific.net/amr.1054.99
Google Scholar
[4]
Laiblová L., Vlach T., Chira A., Novotná M., Fiala C., Ženíšek M., Hájek P. Technical textiles as an innovative material for reinforcing of elements from high performance concretes (HPC). Advanced Materials Research 2014: 1054, pp.110-115.
DOI: 10.4028/www.scientific.net/amr.1054.110
Google Scholar
[5]
Kim D.J., Park S.H., Ryu G.S., Koh K.T. Comparative flexural behaviour of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Construction and Building Materials 2011: 25, pp.4144-4155.
DOI: 10.1016/j.conbuildmat.2011.04.051
Google Scholar
[6]
Zatloukal, J., Bezdička, P., Analysis of Powder Samples Extracted from Concrete Structures of Nuclear Plant, Advanced Materials Research 1054 (2014) 1-5.
DOI: 10.4028/www.scientific.net/amr.1054.1
Google Scholar
[7]
Stemberk, P., Rainova, A., Simulation of hydration and cracking propagation with temperature effect based on fuzzy logic theory, Mechanika 4 (2011) 358-362.
Google Scholar
[8]
Bodnarova, L., Zach, J., Hroudova, J., Valek, J., Methods for Determination of the Quality of Concretes with Respect to Their High Temperature Behaviour, Procedia Engineering 65 (2013) 260-265.
DOI: 10.1016/j.proeng.2013.09.040
Google Scholar
[9]
Vejmelkova, E., Cerny, R., Thermal Properties of PVA-Fiber Reinforced Cement Composites at High Temperatures, Applied Mechanics and Materials 377 (2013) 45-49.
DOI: 10.4028/www.scientific.net/amm.377.45
Google Scholar
[10]
Reiterman, P., Holčapek, O., Jogl, M., Konvalinka, P., Physical and Mechanical Properties of Composites Made with Aluminous Cement and Basalt Fibers Developed for High Temperature Application, Advances in Materials Science and Engineering, Article ID 703029, in press.
DOI: 10.1155/2015/703029
Google Scholar
[11]
Information on http: /www. basaltex. cz/cedic/cedic_charakteristika_cz. htm.
Google Scholar
[12]
Information on http: /www. tohotenax-eu. com/en/products/tenax-carbon-fiber/short-fibers. html.
Google Scholar
[13]
Holčapek O., Reiterman P., Jogl M., Refractory cement composite reinforced by various types of fibers, Materials Science Forum 2015: 824, pp.173-177.
DOI: 10.4028/www.scientific.net/msf.824.173
Google Scholar
[14]
Tassew S.T., Lubell A.S. Mechanical properties of glass fiber reinforced ceramic concrete. Construction and Building Materials 2014: 51, pp.215-224.
DOI: 10.1016/j.conbuildmat.2013.10.046
Google Scholar
[15]
EN 196-1: Methods of testing cement. Determination of strength.
Google Scholar
[16]
Holčapek, O., Reiterman, P., Konvalinka, P., Fracture characteristics of refractory composites containing metakaolin and ceramic fibers, Advances in Mechanical Engineering 7(3) (2015) 1-13.
DOI: 10.1177/1687814015573619
Google Scholar