A Study of Natural Pozzolan Mortars Exposed to Sulfate as Energy Efficient Building Material

Article Preview

Abstract:

Reinforcement corrosion is one of the main causes of concrete deterioration. The steel in concrete is naturally protected from corrosion by the presence of a passive film formed through the high alkalinity of concrete. A technique to improve the protection of steel in concrete is the inclusion of mineral additions. Natural pozzolan (NP) from Beni-Saf is a mineral addition that is abundant in western Algeria. The experiment was conducted on mortar specimens, containing steel bars and exposed to the aggressive solutions of Na2SO4 and MgSO4. The status of reinforcement is periodically monitored by measuring the electrochemical potentials and the corrosion rates by the technique of linear polarization resistance (LPR) and also the thermal conductivity was evaluated. The test results show that natural pozzolan significantly affects the physical properties of mortars, improves the corrosion resistance of mortars containing up to 20% of natural pozzolan and reduces the thermal conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-122

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Demirboga R.: Ener. and Build. Vol. 35 (2003), p.189.

Google Scholar

[2] Laoufi L., Mouli M., Senhadji Y.: Trans Tech Publications/ Key Eng. Mater. Vol. 650 (2015), p.105.

Google Scholar

[3] Andrade C. and Bajak R.: Cem. Concr. Res. Vol. 53 (2013), p.59.

Google Scholar

[4] Khan M.I. and Alhozaimy, A.M.: J. Civ. Eng. Vol. 38 (2011), p.71.

Google Scholar

[5] Mehta P.K.: Cem. Concr. Res. Vol. 11 (1981), p.507.

Google Scholar

[6] Janotka I. and Krajci L.: Fifth International Conference, Barcelona Vol. 1 (2000), p.223.

Google Scholar

[7] Mertens G., Snellings R., Van Balen K., Bicer-Simsir B., Verlooy P. and Elsen J.: Cem. Concr. Res. Vol. 39 (2009), p.233.

DOI: 10.1016/j.cemconres.2008.11.008

Google Scholar

[8] Binici H. and Aksogan O.: Cem Concr Res Vol. 28 (2006), p.39.

Google Scholar

[9] NF EN 196-5: Test Methods of Cements – Part 5: Pozzolanicity Test for Pozzolanic Cements, Com. Europ. Normal. (CEN), AFNOR, Paris, France, (2006).

DOI: 10.3403/00483028

Google Scholar

[10] Senhadji Y., Escadeillas G., Mouli M. and Benosman A.S., Eur. J. Environ. and Civ. Eng. Vol. 16 (2012), p.77.

Google Scholar

[11] Laoufi L.: Mechanical Behaviour and Structural of Concrete in aggressive Environment, PhD thesis, ENPO, Oran, Algeria (2015).

Google Scholar

[12] Belas Belaribi N., Semcha A. and Laoufi L.: Rev. Canad. Gén. Civ. Vol. 30 (2003), p.580.

Google Scholar

[13] Senhadji Y., Escadeillas G., Mouli M. and Benosman A. S: Powder Technol. Vol. 254 (2014), p.314.

Google Scholar

[14] Siad H.: The Durability of Self-compacting concrete based pozzolanic additions and limestone fillers, PhD thesis, University of sciences and technology of Oran, Algeria (2010).

Google Scholar

[15] Kaid N.: Durability of Pozzolanic Concrete, PhD thesis, University of sciences and technology of Oran, Algeria (2010).

Google Scholar

[16] Quraishi M.A., Kumar V., Abhilash P.P. and Singh B.N.: J. Mater. Environ. Sci. Vol. 2 (2011), p.365.

Google Scholar

[17] Hélie M.:  Metallic Materials, Corrosion Phenomenon, University of Evry-Val d'Essonne France, (2003).

Google Scholar

[18] ASTM C 876: Cem. and Aggr. Vol. 4 (2009), p.434.

Google Scholar

[19] NA 442-03: Hydraulic Binders-Currents Cements, Composition, Specification and Criteria of Conformity, Algeria Standard, (2003).

Google Scholar

[20] ASTM C 332-09 Standard Specification for lightweight Aggregates for insulating Concrete, ASTM International, West Conshohocken, PA, (2009).

Google Scholar

[21] ASTM C 109-, 1 In: American Society for Testing and Materials (ASTM) International, West Conshohocken, Pa, (2013).

Google Scholar

[22] Batis G., Sideris K.K. and Pantazopoulou P., Anti-Corros. Meth. Mater. Vol. 51(2004), p.112.

Google Scholar

[23] Brown, P.W.: Cem. Concr. Res. Vol. 11 (1981), p.719.

Google Scholar

[24] Al-Amoudi O. S. B.: Constr. Build. Mater. Vol. 9 (1995), p.149.

Google Scholar

[25] Shi X., Yang Z. Liu, Y. and Cross D.: Constr. Build. Mater. Vol. 25 (2011) p.3245.

Google Scholar

[26] Zafeiropoulou T., Rakanta E. and Batis G.: Progress in Organic Coatings Vol. 72 (2011) p.175.

DOI: 10.1016/j.porgcoat.2011.04.005

Google Scholar

[27] Sakr K.: Cem. Concr. Res. Vol. 35 (2005), p.1820.

Google Scholar

[28] Parande A.K., Ramesh Babu B., Pandi K., Karthikeyan M.S. and Palaniswamy N.: Constr. Build. Mater. Vol. 25 (2011), p.288.

Google Scholar

[29] Stewart M. G. and Mullard J.A.: Eng. Struct. Vol. 29 (2007), p.1457.

Google Scholar

[30] Morabito P.: High Temper. -High Pres. Vol. 21 (1989), p.51.

Google Scholar

[31] Ashworth T. and Ashworth E., in: R.S. Graves, D.C. Wysocki, Editors, ASTM STP 1916, Philadelphia, Pa 19103, Vol. 2 (1991), p.415.

Google Scholar

[32] Batis G. Sideris K.K. and Pantazopoulou P.: Anti-Corros. Meth. Mater. Vol. 51 (2004), p.112.

Google Scholar

[33] Al-amoudi O.S.B.: Build. Environ. Vol. 33 (1998), p.53.

Google Scholar

[34] Andrade C., and Alonso C.: Constr. Build. Mater. Vol. 10 (1996), p.315.

Google Scholar