Traditional and Innovative Materials for Energy Efficiency in Buildings

Article Preview

Abstract:

This chapter shows the most recent and innovative contributions and research trends arounbd the wide issue of energy efficiency in buildings by means of passive techniques, such as new effective materials for building envelope optimization. In particular, cool materials will be dealt with by considering their capability to keep a surface cooler than other solutions when exposed to solar radiation. Then multifunctional materials such as thermal and acoustic insulation panels will be analyzed. Finbally, natural and biobased solutions for energy saving will be investigated. Each one of these topics will be studied by elaborating a first general assessment of each technique and then by analyzing the most recent contributions and research trends in order to provide a wide perspective of the question that is going to be addressed in this chapter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-34

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Akbari, S. Menon, A. Rosenfeld, Global cooling: increasing world-wide urban albedos to offset CO2, Climate change, Vol. 94 (2009), pp.275-286.

DOI: 10.1007/s10584-008-9515-9

Google Scholar

[2] H. Akbari, H. Damon Matthews, Global cooling updates: Reflective roofs and pavements, Energy and Buildings, Vol. 55 (2012) pp.2-6.

DOI: 10.1016/j.enbuild.2012.02.055

Google Scholar

[3] M. Santamouris, On the energy impact of urban heat island and global warming on buildings, Energy and buildings, Vol. 82 (2014) pp.100-113.

DOI: 10.1016/j.enbuild.2014.07.022

Google Scholar

[4] A.M. Coutts, E. Daly, J. Beringer, N.J. Tapper, Assessing practical measures to reduce urban heat: green and cool roofs, Building and Environment, Vol. 70 (2013) pp.266-276.

DOI: 10.1016/j.buildenv.2013.08.021

Google Scholar

[5] A. Gros, E. Bozonnet, C. Inard, Cool materials impact at district scale- coupling building energy and microclimate models, Sustainable cities and society, Vol. 13 (2014), pp.254-266.

DOI: 10.1016/j.scs.2014.02.002

Google Scholar

[6] American Society for Testing Materials. ASTM E 903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres; American Society for Testing Materials: West Conshohocken, PA, USA, (1996).

DOI: 10.1520/e0903-96

Google Scholar

[7] N.H. Wong and S. K. Jusuf, Urban Heat Island and Mitigation Strategies at City and Building Level, Advances in the Development of Cool Materials for the Built Environment, (2013), pp.3-32.

DOI: 10.2174/9781608054718113010004

Google Scholar

[8] American Society for Testing Materials. ASTM C1371-04a(2010).

Google Scholar

[9] M. Santamouris, Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments, Solar Energy, Vol. 103, (2014), p.682–703.

DOI: 10.1016/j.solener.2012.07.003

Google Scholar

[10] M. Pomerantz, B. Pon, H. Akbari, S.C. Chang, The Effect of Pavements' Temperatures On Air Temperatures in Large Cities. LBNL Report-43442 (2000).

Google Scholar

[11] L. Doulos, M. Santamouris, I. Livada, Passive cooling of outdoor urban spaces. The role of materials. Solar Energy, Vol. 77 (2001) pp.231-49.

DOI: 10.1016/j.solener.2004.04.005

Google Scholar

[12] M. Stathopoulou, A. Synnefa, C. Cartalis, M. Santamouris, T. Karlessi, H. Akbari, A surface heat island study of Athens using high-resolution satellite imagery and measurements of the optical and thermal properties of commonly used building and paving materials. Int J Sustain Ener, Vol. 28-1, (2009).

DOI: 10.1080/14786450802452753

Google Scholar

[13] R. Levinson, H. Akbari, S. Konopacki, S. Bretz, Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements. Vol. 33 (2): Energy Policy (2005), pp.151-170.

DOI: 10.1016/s0301-4215(03)00206-4

Google Scholar

[14] R. Levinson, P. Berdhal, H. Akbari, Solar spectral optical properties of pigments- part I: model for deriving scattering and absorption coefficients from trasmittance and reflectance measurements, Solar Energy Materials and Solar cells, Vol. 89 (2005).

DOI: 10.1016/j.solmat.2004.11.012

Google Scholar

[15] R. Levinson, P. Berdhal, H. Akbari, Solar spectral optical properties of pigments- part II: survey of common colorants, Solar Energy Materials and Solar cells, Vol. 89 (2005), pp.351-389.

DOI: 10.1016/j.solmat.2004.11.013

Google Scholar

[16] A. Synnefa and M. Santamouris, White or Light Colored Cool Roofing Materials, Advances in the Development of Cool Materials for the Built Environment, (2013), pp.33-71.

DOI: 10.2174/9781608054718113010005

Google Scholar

[17] Simpson JR, McPherson EG. The effects of roof albedo modification on cooling loads of scale model residences in Tucson, Arizona. Energy and buildings 1997; 25: 127-37.

DOI: 10.1016/s0378-7788(96)01002-x

Google Scholar

[18] L. Gartland, Heat Islands: Understanding and Mitigating Heat in Urban Areas, Earthscan, (2008).

Google Scholar

[19] A. Synnefa, M. Santamouris, H. Akbari, Estimating the effect of using cool coatings on energy load sand thermal comfort in residential buildings in various climatic conditions. Energy and Buildings, Vol. 39-11 (2007), pp.1167-1174.

DOI: 10.1016/j.enbuild.2007.01.004

Google Scholar

[20] J. Haberl, S. Cho. Literature Review of Uncertainty of Analysis Methods (Cool Roofs), Report to the Texas Commission on Environmental Quality (1998), Energy Systems Laboratory, Texas A&M University, College Station, TX.

Google Scholar

[21] P. Berdhal, H. Akbari, J. Jacobs, F. Klink, Surface roughness effect on the solar reflectance of cool asphalt shingles, Solar energy materials and solar cells, Vol. 92 (2008), pp.482-489.

DOI: 10.1016/j.solmat.2007.10.011

Google Scholar

[22] F. Rosso, A.L. Pisello, G. Pignatta, V.L. Castaldo, C. Piselli, F. Cotana, M. Ferrero, Outdoor thermal and visual perception of natural cool materials for roof and urban paving, Procedia Engineering (2015).

DOI: 10.1016/j.proeng.2015.11.394

Google Scholar

[23] A. L. Pisello. F. Cotana, The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring, Energy and Buildings, Vol. 69 (2014), pp.154-164.

DOI: 10.1016/j.enbuild.2013.10.031

Google Scholar

[24] P. Berdahl, E. Bretz. Preliminary survey of the solar reflectance of cool roofing materials, Energy and Buildings, Vol. 25 (1997), pp.149-158.

DOI: 10.1016/s0378-7788(96)01004-3

Google Scholar

[25] M. Moriyama and H. Takebayashi, Colored Cool Materials, Advances in the Development of Cool Materials for the Built Environment (2013), pp.72-82.

DOI: 10.2174/9781608054718113010006

Google Scholar

[26] A.L. Pisello, Thermal-energy analysis of roof cool clay tiles for application in historic buildings and cities, Sustainable Cities and Society (2015), in press.

DOI: 10.1016/j.scs.2015.03.003

Google Scholar

[27] Synnefa A, Santamouris M, Apostolakis K. On the development, optical properties and thermal performance of cool coloued coatings for the urban environment. Solar Energy 2006; 81: 488-497.

DOI: 10.1016/j.solener.2006.08.005

Google Scholar

[28] A.L. Pisello, F. Cotana, in: Experimental and numerical study on thermal performance of new cool clay tiles in residential buildings in Europe, the 7th International Conference on Applied Energy – ICAE2015 (2015).

DOI: 10.1016/j.egypro.2015.07.227

Google Scholar

[29] F. Rossi, A. L. Pisello, A. Nicolini, M. Filipponi, M. Palombo, Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model, Applied Energy Vol. 114 (2014), p.621–631.

DOI: 10.1016/j.apenergy.2013.10.038

Google Scholar

[30] H. Akbari, A.G. Touchaei, Modeling and labeling heterogenous directional reflective roofing materials, Solar energy materials and solar cells Vol 124 (2014), pp.192-210.

DOI: 10.1016/j.solmat.2014.01.036

Google Scholar

[31] F. Rossi, B. Castellani, A. Presciutti, E. Morini, M. Filipponi, A. Nicolini, M. Santamouris, Retro-reflective façades for urban heat island mitigation: Experimental investigation and energy evaluations, Applied Energy, Vol. 125 (2015), pp.8-20.

DOI: 10.1016/j.apenergy.2015.01.129

Google Scholar

[32] T. Karlessi and M. Santamouris, Research on Thermochromic and PCM Doped Infrared Reflective Coatings, Advances in the Development of Cool Materials for the Built Environment, Vol. 83 (2013), pp.103-83.

DOI: 10.2174/9781608054718113010007

Google Scholar

[33] A. McNaught, A. Wilkinson. Compendium of Chemical Terminology. IUPAC, second edition. The Royal Society of Chemistry, Cambridge, UK, Blackwell Science (1997).

Google Scholar

[34] M.A. White, M. LeBlanc, Thermochromism in Commercial Products. J Chemical Education Vol. 76 (1999), pp.1201-1205.

Google Scholar

[35] T. Karlessi, M. Santamouris, K. Apostolakis, A. Synnefa, Livada, Development and testing of thermochromic coatings for buildings and urban structures, Solar Energy, Vol. 83 (2009), p.538–551.

DOI: 10.1016/j.solener.2008.10.005

Google Scholar

[36] Y. Ma, X. Zhang, B. Zhu, K. Wu, Research on reversible effects and mechanism between the energy-absorbing and energy-reflecting states of chameleon-type building coatings. J Solar Energy, Vol. 72 (2002), pp.511-520.

DOI: 10.1016/s0038-092x(02)00029-4

Google Scholar

[37] Ma Y, Zhu B, Wu K. Preparation and solar reflectance spectra of chameleon-type building coatings, J Solar Energy, Vol. 70 (2001), pp.417-422.

DOI: 10.1016/s0038-092x(00)00160-2

Google Scholar

[38] Karlessi T, Santamouris M, Apostokalis K, Synnefa A, Livada I. Development and testing of thermochromic coatings for buildings and urban structures. Solar Energy 2008; 83: 538- 51.

DOI: 10.1016/j.solener.2008.10.005

Google Scholar

[39] T. Nomura, N. Okinaka, T. Akiyama, Impregnation of porous material with phase change material for thermal energy storage. Mater. Chem. Phys. Vol. 115 (2009), pp.846-850.

DOI: 10.1016/j.matchemphys.2009.02.045

Google Scholar

[40] A. De Gracia, L. F. Cabeza, Phase change materials and thermal energy storage for buildings, Energy and Buildings, Vol. 103 (2015), p.414–419.

DOI: 10.1016/j.enbuild.2015.06.007

Google Scholar

[41] P. Arce, A. Castell, M. Medrano, L.F. Cabeza, Assessment of the benefits of employing thermal energy storage in Spain, Germany and Europe, 30th ISES Biennial Solar World Congress 2011, SWC 2011, Vol. 3 (2011)p.1913-(1924).

DOI: 10.18086/swc.2011.16.01

Google Scholar

[42] F. Pachego-Torgal, J.A. Labrinca, L. F- Cabeza, C.G. Granqvist, Eco-efficient materials for mitigating building cooling energy needs, Design, properties and applications, Wood-head publishing, (2015).

DOI: 10.1016/b978-1-78242-380-5.00001-7

Google Scholar

[43] H.Y.B. Mar, R.E. Peterson, P.B. Zimmer, Low-Cost Coatings for Flat-Plate Solar Collectors. Thin Solid Films; Vol. 39 (1976) pp.95-103.

DOI: 10.1016/0040-6090(76)90627-1

Google Scholar

[44] S.W. Moore, Solar-Absorber Selective Paint Research. Solar Energy Materials, Vol. 12-6 (1985) pp.435-47.

DOI: 10.1016/0165-1633(85)90037-1

Google Scholar

[45] H.Z. Tabor, Receiver for solar energy collectors. US 2 917 817. 1959 22.

Google Scholar

[46] H.Y.B. Mar, R.E. Peterson, P.B. Zimmer. Low-Cost Coatings for Flat-Plate Solar Collectors. Thin Solid Films, Vol. 39 (1976) pp.95-103.

DOI: 10.1016/0040-6090(76)90627-1

Google Scholar

[47] M. Hoeflaak, G. Jonkers. Paint for Applying Spectral-Selective Coatings and Process for the Preparation Thereof, Solar Heat Absorbing Devica And Solar Collector Conatining Such a Device. CA 1 187 638. 1981; 21.

Google Scholar

[48] I. Jerman, M. Koželj, B. Orel, The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Sol Energy Mater Sol Cells. Vol. 94-2 (2010).

DOI: 10.1016/j.solmat.2009.09.008

Google Scholar

[49] C.R. Sutter, R.A. Petelinkar, R.E. Reeves, Infrared reflective visually colored metallic compositions. US6468647. 2002; 22.

Google Scholar

[50] T. Kinouchi, T. Yoshinaka, N. Fukae, M. Kanda. Development of cool pavement with dark colored high albedo coating. In: American Meteorological Society, ed. Proceedings of the fifth Conference on urban environment. 23-25 August 2004: Vancouver. American Meteorological Society (2004).

Google Scholar

[51] Z.C. Orel, M.K. Gunde, Spectrally selective paint coatings: Preparation and characterization, Solar Energy Materials & Solar Cells. Vol. 68 (2001) pp.337-353.

DOI: 10.1016/s0927-0248(00)00367-6

Google Scholar

[52] ISO 6946-2007, Building components and building elements — Thermal resistance and thermal transmittance — Calculation method, International Organization for Standardization, Geneva.

DOI: 10.3403/00942964

Google Scholar

[53] ISO 7345-1999, Thermal insulation - Physical quantities and definitions — Calculation method, International Organization for Standardization, Geneva.

Google Scholar

[54] UNI EN ISO 717-2013, Acoustics - Rating of sound insulation in buildings and of building elements - Part 1: Airborne sound insulation, International Organization for Standardization, Geneva.

DOI: 10.3403/30389997

Google Scholar

[55] UNI EN 13501-1 2009, Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests, Ente italiano di normazione.

DOI: 10.3403/30348263

Google Scholar

[56] McKinsey: Pathways to a Low-Carbon Economy. Version 2 of the Global Greenhouse Gas Abatement Cost Curve, McKinsey&Company, (2009).

Google Scholar

[57] B. P. Jelle: Traditional, state-of-the-art and future thermal building insulation materials and solutions–Properties, requirements and possibilities, Energy and Buildings, Vol. 43(10) (2011) pp.2549-2563.

DOI: 10.1016/j.enbuild.2011.05.015

Google Scholar

[58] M.R. Hall: Materials for energy efficiency and thermal comfort in buildings (Woodhead Publishing Limited, UK 2010).

Google Scholar

[59] O. Sengul, S. Azizi, F. Karaosmanoglu, M. A. Tasdemir:. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, Vol. 43(2) (2011) pp.671-676.

DOI: 10.1016/j.enbuild.2010.11.008

Google Scholar

[60] M. Singh, M. Garg: Perlite-based building materials—a review of current applications Construction and Building Materials, Vol. 5(2) (1995) pp.75-81.

DOI: 10.1016/0950-0618(91)90004-5

Google Scholar

[61] A. Ayadi, N. Stiti, K. Boumchedda, H. Rennai, V. Lerari:. Elaboration and characterization of porous granules based on waste glass, Powder Technology, Vol. 208(2) (2011) pp.423-426.

DOI: 10.1016/j.powtec.2010.08.038

Google Scholar

[62] M. Koebel, A. Rigacci, P. Achard:. Aerogel-based thermal superinsulation: an overview, Journal of sol-gel science and technology, Vol. 63(3) (2012) pp.315-339.

DOI: 10.1007/s10971-012-2792-9

Google Scholar

[63] R. Baetens, B. P. Jelle, A. Gustavsen: Aerogel insulation for building applications: a state-of-the-art review, Energy and Buildings, Vol. 43(4) (2011) pp.761-769.

DOI: 10.1016/j.enbuild.2010.12.012

Google Scholar

[64] V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, J. Phalippou: Acoustic properties and potential applications of silica aerogels. Journal of Non-Crystalline Solids, Vol. 186 (1995) pp.244-255.

DOI: 10.1016/0022-3093(95)00049-6

Google Scholar

[65] P. Ricciardi, V. Gibiat, A. Hooley: Multilayer absorbers of silica aerogel, In Proceedings of Forum Acusticum (2002, September).

Google Scholar

[66] M. Reim, G. Reichenauer, W. Körner, J. Manara, M. Arduini-Schuster, S. Korder, J. Fricke:. Silica-aerogel granulate–Structural, optical and thermal properties, Journal of non-crystalline solids, Vol. 350 (2004) pp.358-363.

DOI: 10.1016/j.jnoncrysol.2004.06.048

Google Scholar

[67] F. Cotana, A.L. Pisello, E. Moretti, C. Buratti: Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance, Building and Environment, Vol. 81 (2014).

DOI: 10.1016/j.buildenv.2014.06.014

Google Scholar

[68] M. Reim, W. Körner, W. Körner, J. Manara, M. Arduini-Schuster: Silica aerogel granulate material for thermal insulation and daylighting, Solar Energy, Vol. 79(2) (2005), pp.131-139.

DOI: 10.1016/j.solener.2004.08.032

Google Scholar

[69] B.P. Jelle: Traditional, state-of-the-art and future thermal building insulation materials and solutions–Properties, requirements and possibilities, Energy and Buildings, Vol. 43(10) (2011) pp.2549-2563.

DOI: 10.1016/j.enbuild.2011.05.015

Google Scholar

[70] S.E. Kalnæs, B.P. Jelle:. Vacuum insulation panel products: A state-of-the-art review and future research pathways, Applied Energy, Vol. 116 (2014), pp.355-375.

DOI: 10.1016/j.apenergy.2013.11.032

Google Scholar

[71] E., Wegger, B.P. Jelle, E. Sveipe, S. Grynning, A. Gustavsen, R. Baetens, J.V. Thue: Aging effects on thermal properties and service life of vacuum insulation panels. Journal of Building Physics, Vol. 35(2) (2011) pp.128-167.

DOI: 10.1177/1744259111398635

Google Scholar

[72] M. Alam, H. Singh, M.C. Limbachiya: Vacuum Insulation Panels (VIPs) for building construction industry–A review of the contemporary developments and future directions, Applied energy, Vol. 88(11) (2011) pp.3592-3602.

DOI: 10.1016/j.apenergy.2011.04.040

Google Scholar

[73] F. Asdrubali, F. D'Alessandro, S. Schiavoni:. A review of unconventional sustainable building insulation materials, Sustainable Materials and Technologies, Vol. 4 (2015) pp.1-17.

DOI: 10.1016/j.susmat.2015.05.002

Google Scholar

[74] F. D'Alessandro, F. Asdrubali, G. Baldinelli:. Multi-parametric characterization of a sustainable lightweight concrete containing polymers derived from electric wire, Construction and Building Materials, Vol. 68 (2014) pp.277-284.

DOI: 10.1016/j.conbuildmat.2014.06.075

Google Scholar

[75] F. Asdrubali, A.L. Pisello, F. D'Alessandro, F. Bianchi, C. Fabiani, M. Cornicchia, A. Rotili: Experimental and numerical characterization of innovative cardboard based panels: Thermal and acoustic performance analysis and life cycle assessment, Building and Environment, in press accepted manuscript (2015).

DOI: 10.1016/j.buildenv.2015.09.003

Google Scholar

[76] A. Briga-Sá, D. Nascimento, N. Teixeira, J. Pinto, F. Caldeira, H. Varum, A. Paiva: Textile waste as an alternative thermal insulation building material solution, Construction and Building Materials, Vol. 38 (2013) pp.155-160.

DOI: 10.1016/j.conbuildmat.2012.08.037

Google Scholar

[77] F. Krausmann, S. Gingrich, N. Eisenmenger, K.H. Erb, H. Haberl and M. Fischer-Kowalski: Ecol. Econ. Vol. 68 (2009), pp.2696-2705.

DOI: 10.1016/j.ecolecon.2009.05.007

Google Scholar

[78] M. Fischer-Kowalski and M. Haberl, in: Advances in Ecological Economics, edited by Edward Elgar, Cheltenham, UK (2007).

Google Scholar

[79] U. Kulatunga, D. Amaratunga, R. Haigh and R. Rameezdeen: Manag. Environ. Qual. Vol. 17 (1) (2006), pp.57-72.

Google Scholar

[80] F. Pacheco-torgal, L. Cabeza, J. Labrincha and A. De Magalhaes: Eco-efficient construction and building material (Woodhead Publishing Limited, UK 2014).

Google Scholar

[81] M.R. Hall: Materials for energy efficiency and thermal comfort in buildings (Woodhead Publishing Limited, UK 2010).

Google Scholar

[82] A. Almusaed and A. Almssad: Case Studies in Construction Materials Vol. 2 (2015), pp.42-54.

Google Scholar

[83] J. Coma, G. Pérez, C. Solé, A. Castell and L.F. Cabeza: Renew. Energ. Vol. 85 (2016), pp.1106-1115.

Google Scholar

[84] G. Pérez, J. Coma, C. Solé, A. Castell and L.F. Cabeza: Energy Procedia Vol. 30 (2012), pp.452-460.

DOI: 10.1016/j.egypro.2012.11.054

Google Scholar

[85] R.W.F. Cameron, J.E. Taylor and M.R. Emmett: Build. Environ. Vol. 73 (2014), pp.198-207.

Google Scholar

[86] M. Santamouris: Sol. Energy Vol. 103 (2014), pp.682-703.

Google Scholar

[87] D. Kolokotsa, M. Santamouris and S.C. Zerefos: Sol. Energy Vol. 95 (2013), pp.118-130.

Google Scholar

[88] A. Niachou, K. Papakonstantinou, M. Santamouris, A. Tsangrassoulis and G. Mihalakakou: Energy Build. Vol. 33 (7) (2001), pp.719-729.

DOI: 10.1016/s0378-7788(01)00062-7

Google Scholar

[89] U. Berardi, Am. GhaffarianHoseini and Al. GhaffarianHoseini: Appl. Energy Vol. 115 (2014), pp.411-428.

Google Scholar

[90] M. Manso and J. Castro-Gomes: Renew. Sust. Energ. Rev. Vol. 41 (2015), pp.863-871.

Google Scholar

[91] M. Kohler: Urb. Ecosyst. Vol. 11 (2008), pp.423-426.

Google Scholar

[92] P. La Roche and U. Berardi: Energ. Buildings Vol. 82 (2014), pp.492-504.

Google Scholar

[93] H. Takebayashi and M. Moriyama: Sol. Energy Vol. 86 (2012), pp.2255-2262.

Google Scholar

[94] C. Chen: Ecol. Eng. Vol. 52 (2013), pp.51-58.

Google Scholar

[95] S.E. Ouldboukhitine, R. Belarbi, I. Jaffal and A. Trabelsi: Build. Environ. Vol. 46 (2011), pp.2624-2631.

Google Scholar

[96] L. Malys, M. Musy and C. Inard: Build. Environ. Vol. 73 (2014), pp.187-197.

Google Scholar

[97] E. Alexandri and P. Jones: Build. Environ. Vol. 43 (2008), pp.480-493.

Google Scholar

[98] R. Levinson, S. Chen, P. Berdahl, P. Rosado and L.A. Medina: Sol. Energy Vol. 100 (2014), pp.159-171.

Google Scholar

[99] V.L. Castaldo, V. Coccia, F. Cotana, G. Pignatta, A.L. Pisello and F. Rossi: Urban Climate (2015), in press.

DOI: 10.1016/j.uclim.2015.05.006

Google Scholar

[100] A.L. Pisello, G. Pignatta, V.L. Castaldo and F. Cotana: Sustainability Vol. 6 (2014), pp.4706-4722.

DOI: 10.3390/su6084706

Google Scholar

[101] M. Sutcu, H. Alptekin, E. Erdogmus, Y. Er and O. Gencel: Constr. Build. Mater. Vol. 82 (2015), pp.1-8.

Google Scholar

[102] A.A. Aliabdo, A. Elmoaty, M.A. Elmoaty and E.M. Auda: Constr. Build. Mater. Vol. 50 (2014), pp.28-41.

Google Scholar

[103] F. Rosso, A.L. Pisello, F. Cotana and M. Ferrero: Sustainability Vol. 6 (2014), pp.5439-5462.

Google Scholar

[104] M.K. Nematchoua, R. Tchinda, J.A. Orosa and W.A. Andreasi: J. Build. Eng. Vol. 3 (2015), pp.16-23.

Google Scholar

[105] J.F. Köbbing, N. Thevs and S. Zerbe: Mires and Peat Vol. 13 (1) (2013/14), pp.1-14.

Google Scholar

[106] S.M. Haslam: A Book of Reed (Forrest Text, UK 2010).

Google Scholar

[107] M. Miljan, M.J. Miljan, J. Miljan, K. Akermann and K. Karja: Mires and Peat Vol. 13 (7) (2013/14), pp.1-12.

Google Scholar

[108] A. Shea, K. Wall and P. Walker: Building Serv. Eng. Res. Technol. Vol. 34 (4) (2012), pp.369-380.

Google Scholar

[109] T. Woolley: Natural building, a guide to materials and techniques (The Crowood Press, Malaysia 2006).

Google Scholar

[110] R. Qasass, M. Gorgolewski and H. Ge: Archit. Sci. Rev. Vol. 57 (3) (2014), pp.159-168.

Google Scholar

[111] F. Stazi, E. Tomassoni, C. Bonfigli and C. Di Perna: Appl. Energ. Vol. 134 (2014), pp.176-196.

Google Scholar

[112] B. Ber, M. Premrov, A. Štrukelj and M. Kuhta: Constr. Build. Mater. Vol. 66 (2014), pp.235-246.

Google Scholar