p.1
p.14
p.35
p.50
p.64
p.78
p.88
p.99
Traditional and Innovative Materials for Energy Efficiency in Buildings
Abstract:
This chapter shows the most recent and innovative contributions and research trends arounbd the wide issue of energy efficiency in buildings by means of passive techniques, such as new effective materials for building envelope optimization. In particular, cool materials will be dealt with by considering their capability to keep a surface cooler than other solutions when exposed to solar radiation. Then multifunctional materials such as thermal and acoustic insulation panels will be analyzed. Finbally, natural and biobased solutions for energy saving will be investigated. Each one of these topics will be studied by elaborating a first general assessment of each technique and then by analyzing the most recent contributions and research trends in order to provide a wide perspective of the question that is going to be addressed in this chapter.
Info:
Periodical:
Pages:
14-34
Citation:
Online since:
February 2016
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] H. Akbari, S. Menon, A. Rosenfeld, Global cooling: increasing world-wide urban albedos to offset CO2, Climate change, Vol. 94 (2009), pp.275-286.
[2] H. Akbari, H. Damon Matthews, Global cooling updates: Reflective roofs and pavements, Energy and Buildings, Vol. 55 (2012) pp.2-6.
[3] M. Santamouris, On the energy impact of urban heat island and global warming on buildings, Energy and buildings, Vol. 82 (2014) pp.100-113.
[4] A.M. Coutts, E. Daly, J. Beringer, N.J. Tapper, Assessing practical measures to reduce urban heat: green and cool roofs, Building and Environment, Vol. 70 (2013) pp.266-276.
[5] A. Gros, E. Bozonnet, C. Inard, Cool materials impact at district scale- coupling building energy and microclimate models, Sustainable cities and society, Vol. 13 (2014), pp.254-266.
[6] American Society for Testing Materials. ASTM E 903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres; American Society for Testing Materials: West Conshohocken, PA, USA, (1996).
DOI: 10.1520/e0903-96
[7] N.H. Wong and S. K. Jusuf, Urban Heat Island and Mitigation Strategies at City and Building Level, Advances in the Development of Cool Materials for the Built Environment, (2013), pp.3-32.
[8] American Society for Testing Materials. ASTM C1371-04a(2010).
[9] M. Santamouris, Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments, Solar Energy, Vol. 103, (2014), p.682–703.
[10] M. Pomerantz, B. Pon, H. Akbari, S.C. Chang, The Effect of Pavements' Temperatures On Air Temperatures in Large Cities. LBNL Report-43442 (2000).
[11] L. Doulos, M. Santamouris, I. Livada, Passive cooling of outdoor urban spaces. The role of materials. Solar Energy, Vol. 77 (2001) pp.231-49.
[12] M. Stathopoulou, A. Synnefa, C. Cartalis, M. Santamouris, T. Karlessi, H. Akbari, A surface heat island study of Athens using high-resolution satellite imagery and measurements of the optical and thermal properties of commonly used building and paving materials. Int J Sustain Ener, Vol. 28-1, (2009).
[13] R. Levinson, H. Akbari, S. Konopacki, S. Bretz, Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements. Vol. 33 (2): Energy Policy (2005), pp.151-170.
[14] R. Levinson, P. Berdhal, H. Akbari, Solar spectral optical properties of pigments- part I: model for deriving scattering and absorption coefficients from trasmittance and reflectance measurements, Solar Energy Materials and Solar cells, Vol. 89 (2005).
[15] R. Levinson, P. Berdhal, H. Akbari, Solar spectral optical properties of pigments- part II: survey of common colorants, Solar Energy Materials and Solar cells, Vol. 89 (2005), pp.351-389.
[16] A. Synnefa and M. Santamouris, White or Light Colored Cool Roofing Materials, Advances in the Development of Cool Materials for the Built Environment, (2013), pp.33-71.
[17] Simpson JR, McPherson EG. The effects of roof albedo modification on cooling loads of scale model residences in Tucson, Arizona. Energy and buildings 1997; 25: 127-37.
[18] L. Gartland, Heat Islands: Understanding and Mitigating Heat in Urban Areas, Earthscan, (2008).
[19] A. Synnefa, M. Santamouris, H. Akbari, Estimating the effect of using cool coatings on energy load sand thermal comfort in residential buildings in various climatic conditions. Energy and Buildings, Vol. 39-11 (2007), pp.1167-1174.
[20] J. Haberl, S. Cho. Literature Review of Uncertainty of Analysis Methods (Cool Roofs), Report to the Texas Commission on Environmental Quality (1998), Energy Systems Laboratory, Texas A&M University, College Station, TX.
[21] P. Berdhal, H. Akbari, J. Jacobs, F. Klink, Surface roughness effect on the solar reflectance of cool asphalt shingles, Solar energy materials and solar cells, Vol. 92 (2008), pp.482-489.
[22] F. Rosso, A.L. Pisello, G. Pignatta, V.L. Castaldo, C. Piselli, F. Cotana, M. Ferrero, Outdoor thermal and visual perception of natural cool materials for roof and urban paving, Procedia Engineering (2015).
[23] A. L. Pisello. F. Cotana, The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring, Energy and Buildings, Vol. 69 (2014), pp.154-164.
[24] P. Berdahl, E. Bretz. Preliminary survey of the solar reflectance of cool roofing materials, Energy and Buildings, Vol. 25 (1997), pp.149-158.
[25] M. Moriyama and H. Takebayashi, Colored Cool Materials, Advances in the Development of Cool Materials for the Built Environment (2013), pp.72-82.
[26] A.L. Pisello, Thermal-energy analysis of roof cool clay tiles for application in historic buildings and cities, Sustainable Cities and Society (2015), in press.
[27] Synnefa A, Santamouris M, Apostolakis K. On the development, optical properties and thermal performance of cool coloued coatings for the urban environment. Solar Energy 2006; 81: 488-497.
[28] A.L. Pisello, F. Cotana, in: Experimental and numerical study on thermal performance of new cool clay tiles in residential buildings in Europe, the 7th International Conference on Applied Energy – ICAE2015 (2015).
[29] F. Rossi, A. L. Pisello, A. Nicolini, M. Filipponi, M. Palombo, Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model, Applied Energy Vol. 114 (2014), p.621–631.
[30] H. Akbari, A.G. Touchaei, Modeling and labeling heterogenous directional reflective roofing materials, Solar energy materials and solar cells Vol 124 (2014), pp.192-210.
[31] F. Rossi, B. Castellani, A. Presciutti, E. Morini, M. Filipponi, A. Nicolini, M. Santamouris, Retro-reflective façades for urban heat island mitigation: Experimental investigation and energy evaluations, Applied Energy, Vol. 125 (2015), pp.8-20.
[32] T. Karlessi and M. Santamouris, Research on Thermochromic and PCM Doped Infrared Reflective Coatings, Advances in the Development of Cool Materials for the Built Environment, Vol. 83 (2013), pp.103-83.
[33] A. McNaught, A. Wilkinson. Compendium of Chemical Terminology. IUPAC, second edition. The Royal Society of Chemistry, Cambridge, UK, Blackwell Science (1997).
[34] M.A. White, M. LeBlanc, Thermochromism in Commercial Products. J Chemical Education Vol. 76 (1999), pp.1201-1205.
[35] T. Karlessi, M. Santamouris, K. Apostolakis, A. Synnefa, Livada, Development and testing of thermochromic coatings for buildings and urban structures, Solar Energy, Vol. 83 (2009), p.538–551.
[36] Y. Ma, X. Zhang, B. Zhu, K. Wu, Research on reversible effects and mechanism between the energy-absorbing and energy-reflecting states of chameleon-type building coatings. J Solar Energy, Vol. 72 (2002), pp.511-520.
[37] Ma Y, Zhu B, Wu K. Preparation and solar reflectance spectra of chameleon-type building coatings, J Solar Energy, Vol. 70 (2001), pp.417-422.
[38] Karlessi T, Santamouris M, Apostokalis K, Synnefa A, Livada I. Development and testing of thermochromic coatings for buildings and urban structures. Solar Energy 2008; 83: 538- 51.
[39] T. Nomura, N. Okinaka, T. Akiyama, Impregnation of porous material with phase change material for thermal energy storage. Mater. Chem. Phys. Vol. 115 (2009), pp.846-850.
[40] A. De Gracia, L. F. Cabeza, Phase change materials and thermal energy storage for buildings, Energy and Buildings, Vol. 103 (2015), p.414–419.
[41] P. Arce, A. Castell, M. Medrano, L.F. Cabeza, Assessment of the benefits of employing thermal energy storage in Spain, Germany and Europe, 30th ISES Biennial Solar World Congress 2011, SWC 2011, Vol. 3 (2011)p.1913-(1924).
[42] F. Pachego-Torgal, J.A. Labrinca, L. F- Cabeza, C.G. Granqvist, Eco-efficient materials for mitigating building cooling energy needs, Design, properties and applications, Wood-head publishing, (2015).
[43] H.Y.B. Mar, R.E. Peterson, P.B. Zimmer, Low-Cost Coatings for Flat-Plate Solar Collectors. Thin Solid Films; Vol. 39 (1976) pp.95-103.
[44] S.W. Moore, Solar-Absorber Selective Paint Research. Solar Energy Materials, Vol. 12-6 (1985) pp.435-47.
[45] H.Z. Tabor, Receiver for solar energy collectors. US 2 917 817. 1959 22.
[46] H.Y.B. Mar, R.E. Peterson, P.B. Zimmer. Low-Cost Coatings for Flat-Plate Solar Collectors. Thin Solid Films, Vol. 39 (1976) pp.95-103.
[47] M. Hoeflaak, G. Jonkers. Paint for Applying Spectral-Selective Coatings and Process for the Preparation Thereof, Solar Heat Absorbing Devica And Solar Collector Conatining Such a Device. CA 1 187 638. 1981; 21.
[48] I. Jerman, M. Koželj, B. Orel, The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Sol Energy Mater Sol Cells. Vol. 94-2 (2010).
[49] C.R. Sutter, R.A. Petelinkar, R.E. Reeves, Infrared reflective visually colored metallic compositions. US6468647. 2002; 22.
[50] T. Kinouchi, T. Yoshinaka, N. Fukae, M. Kanda. Development of cool pavement with dark colored high albedo coating. In: American Meteorological Society, ed. Proceedings of the fifth Conference on urban environment. 23-25 August 2004: Vancouver. American Meteorological Society (2004).
[51] Z.C. Orel, M.K. Gunde, Spectrally selective paint coatings: Preparation and characterization, Solar Energy Materials & Solar Cells. Vol. 68 (2001) pp.337-353.
[52] ISO 6946-2007, Building components and building elements — Thermal resistance and thermal transmittance — Calculation method, International Organization for Standardization, Geneva.
DOI: 10.3403/00942964
[53] ISO 7345-1999, Thermal insulation - Physical quantities and definitions — Calculation method, International Organization for Standardization, Geneva.
[54] UNI EN ISO 717-2013, Acoustics - Rating of sound insulation in buildings and of building elements - Part 1: Airborne sound insulation, International Organization for Standardization, Geneva.
DOI: 10.3403/30389997
[55] UNI EN 13501-1 2009, Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests, Ente italiano di normazione.
DOI: 10.3403/30348263
[56] McKinsey: Pathways to a Low-Carbon Economy. Version 2 of the Global Greenhouse Gas Abatement Cost Curve, McKinsey&Company, (2009).
[57] B. P. Jelle: Traditional, state-of-the-art and future thermal building insulation materials and solutions–Properties, requirements and possibilities, Energy and Buildings, Vol. 43(10) (2011) pp.2549-2563.
[58] M.R. Hall: Materials for energy efficiency and thermal comfort in buildings (Woodhead Publishing Limited, UK 2010).
[59] O. Sengul, S. Azizi, F. Karaosmanoglu, M. A. Tasdemir:. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, Vol. 43(2) (2011) pp.671-676.
[60] M. Singh, M. Garg: Perlite-based building materials—a review of current applications Construction and Building Materials, Vol. 5(2) (1995) pp.75-81.
[61] A. Ayadi, N. Stiti, K. Boumchedda, H. Rennai, V. Lerari:. Elaboration and characterization of porous granules based on waste glass, Powder Technology, Vol. 208(2) (2011) pp.423-426.
[62] M. Koebel, A. Rigacci, P. Achard:. Aerogel-based thermal superinsulation: an overview, Journal of sol-gel science and technology, Vol. 63(3) (2012) pp.315-339.
[63] R. Baetens, B. P. Jelle, A. Gustavsen: Aerogel insulation for building applications: a state-of-the-art review, Energy and Buildings, Vol. 43(4) (2011) pp.761-769.
[64] V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, J. Phalippou: Acoustic properties and potential applications of silica aerogels. Journal of Non-Crystalline Solids, Vol. 186 (1995) pp.244-255.
[65] P. Ricciardi, V. Gibiat, A. Hooley: Multilayer absorbers of silica aerogel, In Proceedings of Forum Acusticum (2002, September).
[66] M. Reim, G. Reichenauer, W. Körner, J. Manara, M. Arduini-Schuster, S. Korder, J. Fricke:. Silica-aerogel granulate–Structural, optical and thermal properties, Journal of non-crystalline solids, Vol. 350 (2004) pp.358-363.
[67] F. Cotana, A.L. Pisello, E. Moretti, C. Buratti: Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance, Building and Environment, Vol. 81 (2014).
[68] M. Reim, W. Körner, W. Körner, J. Manara, M. Arduini-Schuster: Silica aerogel granulate material for thermal insulation and daylighting, Solar Energy, Vol. 79(2) (2005), pp.131-139.
[69] B.P. Jelle: Traditional, state-of-the-art and future thermal building insulation materials and solutions–Properties, requirements and possibilities, Energy and Buildings, Vol. 43(10) (2011) pp.2549-2563.
[70] S.E. Kalnæs, B.P. Jelle:. Vacuum insulation panel products: A state-of-the-art review and future research pathways, Applied Energy, Vol. 116 (2014), pp.355-375.
[71] E., Wegger, B.P. Jelle, E. Sveipe, S. Grynning, A. Gustavsen, R. Baetens, J.V. Thue: Aging effects on thermal properties and service life of vacuum insulation panels. Journal of Building Physics, Vol. 35(2) (2011) pp.128-167.
[72] M. Alam, H. Singh, M.C. Limbachiya: Vacuum Insulation Panels (VIPs) for building construction industry–A review of the contemporary developments and future directions, Applied energy, Vol. 88(11) (2011) pp.3592-3602.
[73] F. Asdrubali, F. D'Alessandro, S. Schiavoni:. A review of unconventional sustainable building insulation materials, Sustainable Materials and Technologies, Vol. 4 (2015) pp.1-17.
[74] F. D'Alessandro, F. Asdrubali, G. Baldinelli:. Multi-parametric characterization of a sustainable lightweight concrete containing polymers derived from electric wire, Construction and Building Materials, Vol. 68 (2014) pp.277-284.
[75] F. Asdrubali, A.L. Pisello, F. D'Alessandro, F. Bianchi, C. Fabiani, M. Cornicchia, A. Rotili: Experimental and numerical characterization of innovative cardboard based panels: Thermal and acoustic performance analysis and life cycle assessment, Building and Environment, in press accepted manuscript (2015).
[76] A. Briga-Sá, D. Nascimento, N. Teixeira, J. Pinto, F. Caldeira, H. Varum, A. Paiva: Textile waste as an alternative thermal insulation building material solution, Construction and Building Materials, Vol. 38 (2013) pp.155-160.
[77] F. Krausmann, S. Gingrich, N. Eisenmenger, K.H. Erb, H. Haberl and M. Fischer-Kowalski: Ecol. Econ. Vol. 68 (2009), pp.2696-2705.
[78] M. Fischer-Kowalski and M. Haberl, in: Advances in Ecological Economics, edited by Edward Elgar, Cheltenham, UK (2007).
[79] U. Kulatunga, D. Amaratunga, R. Haigh and R. Rameezdeen: Manag. Environ. Qual. Vol. 17 (1) (2006), pp.57-72.
[80] F. Pacheco-torgal, L. Cabeza, J. Labrincha and A. De Magalhaes: Eco-efficient construction and building material (Woodhead Publishing Limited, UK 2014).
[81] M.R. Hall: Materials for energy efficiency and thermal comfort in buildings (Woodhead Publishing Limited, UK 2010).
[82] A. Almusaed and A. Almssad: Case Studies in Construction Materials Vol. 2 (2015), pp.42-54.
[83] J. Coma, G. Pérez, C. Solé, A. Castell and L.F. Cabeza: Renew. Energ. Vol. 85 (2016), pp.1106-1115.
[84] G. Pérez, J. Coma, C. Solé, A. Castell and L.F. Cabeza: Energy Procedia Vol. 30 (2012), pp.452-460.
[85] R.W.F. Cameron, J.E. Taylor and M.R. Emmett: Build. Environ. Vol. 73 (2014), pp.198-207.
[86] M. Santamouris: Sol. Energy Vol. 103 (2014), pp.682-703.
[87] D. Kolokotsa, M. Santamouris and S.C. Zerefos: Sol. Energy Vol. 95 (2013), pp.118-130.
[88] A. Niachou, K. Papakonstantinou, M. Santamouris, A. Tsangrassoulis and G. Mihalakakou: Energy Build. Vol. 33 (7) (2001), pp.719-729.
[89] U. Berardi, Am. GhaffarianHoseini and Al. GhaffarianHoseini: Appl. Energy Vol. 115 (2014), pp.411-428.
[90] M. Manso and J. Castro-Gomes: Renew. Sust. Energ. Rev. Vol. 41 (2015), pp.863-871.
[91] M. Kohler: Urb. Ecosyst. Vol. 11 (2008), pp.423-426.
[92] P. La Roche and U. Berardi: Energ. Buildings Vol. 82 (2014), pp.492-504.
[93] H. Takebayashi and M. Moriyama: Sol. Energy Vol. 86 (2012), pp.2255-2262.
[94] C. Chen: Ecol. Eng. Vol. 52 (2013), pp.51-58.
[95] S.E. Ouldboukhitine, R. Belarbi, I. Jaffal and A. Trabelsi: Build. Environ. Vol. 46 (2011), pp.2624-2631.
[96] L. Malys, M. Musy and C. Inard: Build. Environ. Vol. 73 (2014), pp.187-197.
[97] E. Alexandri and P. Jones: Build. Environ. Vol. 43 (2008), pp.480-493.
[98] R. Levinson, S. Chen, P. Berdahl, P. Rosado and L.A. Medina: Sol. Energy Vol. 100 (2014), pp.159-171.
[99] V.L. Castaldo, V. Coccia, F. Cotana, G. Pignatta, A.L. Pisello and F. Rossi: Urban Climate (2015), in press.
[100] A.L. Pisello, G. Pignatta, V.L. Castaldo and F. Cotana: Sustainability Vol. 6 (2014), pp.4706-4722.
DOI: 10.3390/su6084706
[101] M. Sutcu, H. Alptekin, E. Erdogmus, Y. Er and O. Gencel: Constr. Build. Mater. Vol. 82 (2015), pp.1-8.
[102] A.A. Aliabdo, A. Elmoaty, M.A. Elmoaty and E.M. Auda: Constr. Build. Mater. Vol. 50 (2014), pp.28-41.
[103] F. Rosso, A.L. Pisello, F. Cotana and M. Ferrero: Sustainability Vol. 6 (2014), pp.5439-5462.
[104] M.K. Nematchoua, R. Tchinda, J.A. Orosa and W.A. Andreasi: J. Build. Eng. Vol. 3 (2015), pp.16-23.
[105] J.F. Köbbing, N. Thevs and S. Zerbe: Mires and Peat Vol. 13 (1) (2013/14), pp.1-14.
[106] S.M. Haslam: A Book of Reed (Forrest Text, UK 2010).
[107] M. Miljan, M.J. Miljan, J. Miljan, K. Akermann and K. Karja: Mires and Peat Vol. 13 (7) (2013/14), pp.1-12.
[108] A. Shea, K. Wall and P. Walker: Building Serv. Eng. Res. Technol. Vol. 34 (4) (2012), pp.369-380.
[109] T. Woolley: Natural building, a guide to materials and techniques (The Crowood Press, Malaysia 2006).
[110] R. Qasass, M. Gorgolewski and H. Ge: Archit. Sci. Rev. Vol. 57 (3) (2014), pp.159-168.
[111] F. Stazi, E. Tomassoni, C. Bonfigli and C. Di Perna: Appl. Energ. Vol. 134 (2014), pp.176-196.
[112] B. Ber, M. Premrov, A. Štrukelj and M. Kuhta: Constr. Build. Mater. Vol. 66 (2014), pp.235-246.