[1]
W.G. Cady, Piezoelectricity, Mc Graw Hill, New York, (1946).
Google Scholar
[2]
T. Ikeda, Fundamentals of Piezoelectricity, Oxford Science Publications, Oxford, (1996).
Google Scholar
[3]
H.J. Ding, W.Q. Chen, Three Dimensional Problems of Piezoelasticity, Nova Science Publishers, New York, (2001).
Google Scholar
[4]
J. Yang, J.S. Yang, An Introduction to the Theory of Piezoelectricity, Springer, New York, (2005).
Google Scholar
[5]
A. Saigal, A.E. Giannakopoulos, H.E. Pettermann, S. Suresh, Electrical response during indentation of a 1-3 piezoelectric ceramic-polymer composite, J. Appl. Phys. 86 (1999) 603-6.
DOI: 10.1063/1.370773
Google Scholar
[6]
U. Ramamurty, S. Sridhar, A.E. Giannakopoulos, S. Suresh, An experimental study of spherical indentation of piezoelectric materials, Acta Mater. 47 (1999) 2417-30.
DOI: 10.1016/s1359-6454(99)00095-6
Google Scholar
[7]
S.N. Kamble, D.V. Kubair, U. Ramamurty, Indentation strength of a piezoelectric ceramic: experiments and simulations, J. Mater. Res. 24 (2009) 925-934.
DOI: 10.1557/jmr.2009.0115
Google Scholar
[8]
S. Matysiak, Axisymmetric problem of punch pressing into a piezoelectroelastic half space, Bull. Pol. Acad. Sci. 33 (1985) 25-34.
Google Scholar
[9]
H. Fan, K.Y. Sze, W. Yang, Two-dimensional contact on a piezoelectric half-space, Int. J. Solids Struct. 33 (1996) 1305-1315.
DOI: 10.1016/0020-7683(95)00098-4
Google Scholar
[10]
W.Q. Chen, H.J. Ding, Indentation of a transversely isotropic piezoelectric half-space by a rigid sphere, Acta Mech. Sol. Sin. 12 (1999) 114-120.
Google Scholar
[11]
W.Q. Chen, T. Shioya, H.J. Ding, The elastoelectric field for a rigid conical punch on a transversely isotropic piezoelectric half-space, ASME J. Appl. Mech. 66 (1999) 764-771.
DOI: 10.1115/1.2791738
Google Scholar
[12]
A.E. Giannakopoulos, S. Suresh, Theory of indentation of piezoelectric materials, Acta Mater. 47 (1999) 2153-2164.
DOI: 10.1016/s1359-6454(99)00076-2
Google Scholar
[13]
H.J. Ding, P.F. Hou, F.L. Guo, The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials, Int. J. Solids Struct. 37 (2000) 3201-3229.
DOI: 10.1016/s0020-7683(99)00027-x
Google Scholar
[14]
J.G. Wang, S.S. Fang, L.F. Chen, The state vector methods for space axisymmetric problems in multilayered piezoelectric media, Int. J. Solids Struct. 38 (2002) 3959-3970.
DOI: 10.1016/s0020-7683(02)00267-6
Google Scholar
[15]
G. Ramirez, P. Heyliger, Frictionless contact in a layered piezoelectric half-space, Smart Mater. Struct. 12 (2003) 612-625.
DOI: 10.1088/0964-1726/12/4/312
Google Scholar
[16]
G. Ramirez, Frictionless contact in a layered piezoelectric media characterized by complex eigenvalues, Smart Mater. Struct. 15 (2006) 1287-1295.
DOI: 10.1088/0964-1726/15/5/018
Google Scholar
[17]
S.V. Kalinin, E. Karapetian, M. Kachanov, Nanoelectromechanics of piezoresponse force microscopy, Phys. Rev. B. 70 (2004) 184101.
DOI: 10.1103/physrevb.70.184101
Google Scholar
[18]
C.F. Gao, N. Noda, Green's functions of a half-infinite piezoelectric body: exact solutions, Acta Mech. 172 (2004) 169-179.
DOI: 10.1007/s00707-004-0153-7
Google Scholar
[19]
B.L. Wang, J.C. Han, A circular indenter on a piezoelectric layer, Arch. Appl. Mech. 76 (2006) 367-379.
DOI: 10.1007/s00419-006-0029-5
Google Scholar
[20]
J.H. Wang, C.Q. Chen, T.J. Lu, Indentation responses of piezoelectric films, J. Mech. Phys. Solids. 56 (2008) 3331-3351.
Google Scholar
[21]
B.L. Wang, H.Y. Zhang, J.C. Han, S.Y. Du, Y.G. Sun, Electromechanical behaviour of a finite piezoelectric layer under a flat punch, Int. J. Solids Struct. 45 (2008) 6384-6398.
DOI: 10.1016/j.ijsolstr.2008.08.001
Google Scholar
[22]
L.L. Ke, J. Yang, S. Kitipornchai, Y.S. Wang, Electro-mechanical frictionless contact behavior of a functionally graded piezoelectric layered half-space under a rigid punch, Int. J. Solids Struct. 45 (2008) 3313-3333.
DOI: 10.1016/j.ijsolstr.2008.01.028
Google Scholar
[23]
F.Q. Yang, Analysis of the axisymmetric indentation of a semi-infinite piezoelectric material: the evaluation of the contact stiffness and the effective piezoelectric constant, J. Appl. Phys. 103 (2008) 074115.
DOI: 10.1063/1.2903568
Google Scholar
[24]
W. Han, M. Sofonea, K. Kazmi, Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials, Comput. Methods Appl. Mech. Engrg. 196 (2007) 3915-3926.
DOI: 10.1016/j.cma.2006.10.051
Google Scholar
[25]
M. Barboteu, J.R. Fern´andez, Y. Ouafik, Numerical analysis of two frictionless elasticpiezoelectric contact problems, J. Math. Anal. Appl. 339 (2008) 905-917.
DOI: 10.1016/j.jmaa.2007.07.046
Google Scholar
[26]
S. H¨ueber, A. Matei, B. Wohlmuth, A contact problem for electro-elastic materials, ZAMM-Z. Angew. Math. Me. 93 (2013) 789-800.
DOI: 10.1002/zamm.201200235
Google Scholar
[27]
M. Liu, Y. Fuqian, Finite element analysis of the spherical indentation of transversely isotropic piezoelectric materials, Modelling Simul. Mater. Sci. Eng. 20 (2012) 045019(15pp).
DOI: 10.1088/0965-0393/20/4/045019
Google Scholar
[28]
A. Blazquez, V. Mantic, F. Par´ıs, Application of BEM to generalized plane problems for anisotropic elastic materials in presence of contact. Eng. Anal. Bound. Elem. 30 (2006) 489- 502.
DOI: 10.1016/j.enganabound.2005.07.006
Google Scholar
[29]
L. Rodr´ıguez-Tembleque, F.C. Buroni, R. Abascal, A. S´aez. 3D frictional contact of anisotropic solids using BEM, Eur. J. Mech. A Solids. 30 (2011) 95-104.
DOI: 10.1016/j.euromechsol.2010.09.008
Google Scholar
[30]
L. Rodr´ıguez-Tembleque, F.C. Buroni, R. Abascal, A. S´aez, Analysis of FRP composites under frictional contact conditions, Int. J. Solids Struct. 50 (2013) 3947-3959.
DOI: 10.1016/j.ijsolstr.2013.08.007
Google Scholar
[31]
L. Rodr´ıguez-Tembleque, A. S´aez, F.C. Buroni, Numerical study of polymer composites in contact, CMES-Computer Modeling in Engineering and Sciences. 96 (2013) 131-158.
Google Scholar
[32]
L. Rodr´ıguez-Tembleque, F.C. Buroni, A. S´aez, 3D BEM for orthotropic frictional contact of piezoelectric bodies, Comput. Mech. 56 (2015) 491-502.
DOI: 10.1007/s00466-015-1183-9
Google Scholar
[33]
P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Meth. Appl. Mech. Eng. 92 (1991) 353-375.
DOI: 10.1016/0045-7825(91)90022-x
Google Scholar
[34]
N. Str¨ombeg. An augmented lagrangian method for fretting problems. European Journal of Mechanics A/Solids. 16 (1997) 573-593.
Google Scholar
[35]
P.W. Christensen, A. Klarbring, J.S. Pang, N. Str¨omberg, Formulation and comparison of algorithms for frictional contact problems, Int. J. Numer. Meth. Eng. 42 (1998) 145-173.
DOI: 10.1002/(sici)1097-0207(19980515)42:1<145::aid-nme358>3.0.co;2-l
Google Scholar
[36]
N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, (1988).
DOI: 10.1137/1.9781611970845
Google Scholar
[37]
T.A. Laursen, Computational Contact and Impact Mechanics, Springer, Berlin Heidelberg, (2002).
Google Scholar
[38]
P. Wriggers, Computational Contact Mechanics, J. Wiley & Sons, Chichester, (2002).
Google Scholar
[39]
L.R. Hill, T.N. Farris, Three-Dimensional Piezoelectric Boundary Element Method, AIAA Journal. 36 (1998) 102-108.
DOI: 10.2514/3.13784
Google Scholar
[40]
D.M. Barnett, J. Lothe, Dislocations and Line Charges in Anisotropic Piezoelectric Insulators, Phys. Stat. Sol. (b). 67 (1975) 105-111.
DOI: 10.1002/pssb.2220670108
Google Scholar
[41]
F.C. Buroni, A. S´aez, Three-dimensional Green's function and its derivative for materials with general anisotropic magneto-electro-elastic coupling, Proc. R. Soc. A. 466 (2010) 515.
DOI: 10.1098/rspa.2009.0389
Google Scholar
[42]
L. Rodr´ıguez-Tembleque, R. Abascal, M.H. Aliabadi, Anisotropic wear framework for 3D contact and rolling problems, Comput. Meth. Appl. Mech. Eng. 241 (2012) 1-19.
DOI: 10.1016/j.cma.2012.05.025
Google Scholar
[43]
L. Rodr´ıguez-Tembleque, R. Abascal, Fast FE-BEM algorithms for orthotropic frictional contact, Int. J. Numer. Methods Eng. 94 (2013) 687-707.
DOI: 10.1002/nme.4479
Google Scholar
[44]
L. Rodr´ıguez-Tembleque, R. Abascal, M.H. Aliabadi, Anisotropic contact and wear simulation using boundary elements, Key Engineering Materials. 618 (2014) 73-98.
DOI: 10.4028/www.scientific.net/kem.618.73
Google Scholar