Analysis of Wear Processes for Periodic Loading

Article Preview

Abstract:

In the paper a class of wear problems is considered, for which the contact zone is fixed on one of contacting bodies and translates on the surface of another body, like in the case of punch in relative translation on a substrate. In the case of constant normal loads interacting with the induced monotonic sliding, the steady state wear process is reached. In the case of fixed normal load and the reciprocal sliding condition the wear process tends to its steady periodic state. Similarly, for periodically varying normal load, a steady periodic state is reached for the case of monotonic sliding. A most general case occurs for in-phase or out-of-phase periodic variation of normal load interacting with the reciprocal sliding. The paper is aimed to provide further study of steady wear states by considering periodically varying normal load combined with monotonic or alternating sliding conditions. The illustrative examples demonstrate the contact pressure and wear distribution in steady states with application to brake wear analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-141

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Wriggers P: Computational contact mechanics (J. Wiley and Sons, New York, 2002).

Google Scholar

[2] T.A. Laursen: Computational contact and impact mechanics, (Springer-Verlag, Berlin, 2002).

Google Scholar

[3] A. Konyukhov and K. Schweizerhof: Computational Contact Mechanics, (Springer-Verlag, Heidelberg, 2013).

Google Scholar

[4] J. Haslinger and P. Neittaanmaki: Finite element approximation for optimal shape design, (John Wiley & Sons Ltd., London, 1988).

Google Scholar

[5] D. Hilding, A. Klarbring and J. Petterson: Optimization of structures in unilateral contact, Appl. Mech. Rev. Vol. 52 (1999), pp.139-160.

DOI: 10.1115/1.3098931

Google Scholar

[6] I. Páczelt: Iterative methods for solution of contact optimization problems, Arch. Mech. Vol. 52 (2000), pp.685-711.

Google Scholar

[7] G.K. Sfantos and M.H. Aliabadi: Application of BEM and optimization technique to wear problems, Int. J. Solids Struct. Vol. 43 (2006), pp.3626-3642.

DOI: 10.1016/j.ijsolstr.2005.09.004

Google Scholar

[8] I.G. Goryacheva: Contact Mechanics in Tribology, (Kluwer Academic Publishers, Dordrecht, Boston, London, 2010).

Google Scholar

[9] N.V. Banichuk and S. Yu. Ivanova: Shape optimization in contact problems of the theory of elasticity with incomplete external loading data, Journal of Applied Mathematics and Mechanics Vol. 73 (2009), p.696–704.

DOI: 10.1016/j.jappmathmech.2010.01.010

Google Scholar

[10] N. Strömberg: Finite element treatment of two-dimensional thermoelastic wear problems, Comp. Meth. Appl. Mech. Eng. Vol. 177 (1988), pp.441-455.

Google Scholar

[11] P. Podra, and Andersson S (1999) Simulating sliding wear with finite element method, Tribology International 32: 71-81.

DOI: 10.1016/s0301-679x(99)00012-2

Google Scholar

[12] P. Ireman, A. Klarbring and N. Strömberg: (2002) Finite element algorithms for thermoelastic wear problems, European Journal of Mechanics A/Solids Vol. 21 (2002), p.423–440.

DOI: 10.1016/s0997-7538(02)01208-1

Google Scholar

[13] S. Mukras, N.H. Kim, W.G. Sawyer, D.B. Jackson and L.W. Bergquist: (2009) Numerical integration schemes and parallel computation for wear prediction using finite element method, Wear Vol. 266 (2009), p.822–831.

DOI: 10.1016/j.wear.2008.12.016

Google Scholar

[14] A. Söderberg and S. Andersson: Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software, Wear Vol. 267 (2009), p.2243–225.

DOI: 10.1016/j.wear.2009.09.004

Google Scholar

[15] J. Lengiewicz and S. Stupkiewicz: Efficient model of evolution of wear in quasi-steady-state sliding contacts, Wear Vol. 303 (2013), p.611–621.

DOI: 10.1016/j.wear.2013.03.051

Google Scholar

[16] G.K. Sfantos and M.H. Aliabadi: Application of BEM and optimization technique to wear problems, Int. J. Solids Struct. Vol. 43 (2006), pp.3626-3642.

DOI: 10.1016/j.ijsolstr.2005.09.004

Google Scholar

[17] G.K. Sfantos and M.H. Aliabadi: A boundary element formulation for three-dimensional sliding wear simulation, Wear Vol. 262 (2007), p.672–683.

DOI: 10.1016/j.wear.2006.08.008

Google Scholar

[18] L. Rodriguez-Tembleque, R. Abascal and M.H. Aliabadi: Anisotropic wear framework for 3D contact and rolling problems, Comput. Methods Appl. Mech. Engrg. Vol. 241–244 (2012), p.1–19.

DOI: 10.1016/j.cma.2012.05.025

Google Scholar

[19] L. Rodriguez-Tembleque, M.H. Aliabadi and R. Abascal: Anisotrop contact and wear simulation using boundary elements, Key Engineering Materials Vol. 618 (2014), pp.73-98.

DOI: 10.4028/www.scientific.net/kem.618.73

Google Scholar

[20] U. Peigney: Simulating wear under cyclic loading by a minimization approach, Int. J. Solids Struct. Vol. 41 (2004), pp.6783-6799.

DOI: 10.1016/j.ijsolstr.2004.05.022

Google Scholar

[21] N.H. Kim, D. Won, D. Burris, B. Holtkamp, G.C. Gessel, P. Swanson and W. G. Sawyer: Finite element analysis and experiments of metal/metal wear in oscillatory contacts, Wear Vol. 258 (2005), pp.1787-1793.

DOI: 10.1016/j.wear.2004.12.014

Google Scholar

[22] I.R. McColl, J. Ding and S.B. Leen: Finite element simulation and experimental validation of fretting wear, Wear Vol. 256 (2004), p.1114–1127.

DOI: 10.1016/j.wear.2003.07.001

Google Scholar

[23] I.G. Goryacheva, P.T. Rajeev and T.N. Farris: Wear in partial slip contact, J. Tribology Vol. 123 (2001), pp.848-856.

DOI: 10.1115/1.1338476

Google Scholar

[24] S. Fouvry, P. Kapsa and L. Vincent: Analysis of sliding behaviour for fretting loadings: determination of transition criteria, Wear Vol. 185 (1995), p.35–46.

DOI: 10.1016/0043-1648(94)06582-9

Google Scholar

[25] J. Ding, S.B. Leen and I.R. McColl: The effect of slip regime on fretting wear-induced stress evolution, Int. J. Fatigue Vol. 26 (2004), p.521–531.

DOI: 10.1016/j.ijfatigue.2003.09.001

Google Scholar

[26] K. Elleuch and S. Fouvry: Experimental and modeling aspects of abrasive wear of a A357 aluminium alloy under gross slip fretting conditions, Wear Vol. 258 (2005), p.40–49.

DOI: 10.1016/j.wear.2004.04.010

Google Scholar

[27] S. Fouvry, C. Paulin and T. Liskiewicz: Application of an energy wear approach to quantify fretting contact durability: introduction of a wear energy capacity concept, Tribol. Int. Vol. 40 (2007), p.1428–1440.

DOI: 10.1016/j.triboint.2007.02.011

Google Scholar

[28] D. Dini, A. Sackfield and D.A. Hills: An axi-symmetric Hertzian contact subject to cyclic loading, Wear Vol. 265 (2008), p.1918-(1922).

DOI: 10.1016/j.wear.2008.04.031

Google Scholar

[29] S. Heredia and S. Fouvry: Introduction of a new sliding regime criterion to quantify partial, mixed and gross slip fretting regimes: Correlation with wear and cracking processes, Wear Vol. 269 (2010), pp.515-524.

DOI: 10.1016/j.wear.2010.05.002

Google Scholar

[30] Z. Mróz and I. Páczelt: Analysis of thermo-elastic wear problems, J. Thermal Stresses Vol. 34-35 (2011), pp.569-606.

DOI: 10.1080/01495739.2011.564026

Google Scholar

[31] I. Páczelt and Z. Mróz: On optimal contact shapes generated by wear, Int. J. Num. Meth. Eng. Vol. 63 (2005), pp.1310-1347.

DOI: 10.1002/nme.1321

Google Scholar

[32] I. Páczelt and Z. Mróz: On the analysis of steady sliding wear process, Tribol. Int. Vol. 42 (2009), pp.275-283.

DOI: 10.1016/j.triboint.2008.06.007

Google Scholar

[33] I. Páczelt and Z. Mróz: Variational approach to the analysis of steady state thermo-elastic wear regimes, Int. J. Num. Meth. Eng. Vol. 81 (2010), pp.728-760.

DOI: 10.1002/nme.2709

Google Scholar

[34] I. Páczelt and Z. Mróz: Numerical analysis of steady thermo-elastic wear regimes induced by translating and rotating punches, Computes and Structures Vol. 89 (2011), pp.2495-2521.

DOI: 10.1016/j.compstruc.2011.06.001

Google Scholar

[35] I. Páczelt and Z. Mróz: Solution of wear problems for monotonic and periodic sliding with p-version of the finite element method, Comput. Methods Appl. Mech. Eng. Vol. 249-252 (2012), pp.75-103.

DOI: 10.1016/j.cma.2012.02.012

Google Scholar

[36] I. Páczelt, S. Kucharski and Z. Mróz: The experimental and numerical analysis of quasi-steady wear processes for a sliding spherical indenter, Wear Vol. 274-275 (2012), pp.127-148.

DOI: 10.1016/j.wear.2011.08.026

Google Scholar

[37] I. Páczelt and Z. Mróz: Analysis of thermo-mechanical wear problems for reciprocal punch sliding, Adv. Eng. Software Vol. 80 (2015), pp.139-155.

DOI: 10.1016/j.advengsoft.2014.09.012

Google Scholar

[38] G. Zavarise, P. Wriggers and P.B. Schrefler: On augmented Lagrangian algorithms for thermomechanical contact problems with friction, Int. J. Num. Meth. Eng. Vol. 38 (1995), pp.2929-2949.

DOI: 10.1002/nme.1620381706

Google Scholar

[39] B. Szabó and I. Babuska: Finite element analysis, (Wiley-Intersience, New York, 1991).

Google Scholar

[40] I. Páczelt, B. Szabó and T. Szabó: Solution of contact problem using the hp-version of the finite element method, Comput. Math. Appl. Vol. 38 (2000), p.49–69.

DOI: 10.1016/s0898-1221(99)00261-8

Google Scholar

[41] J. Awrejcewicz and D. Grzelczyk: Modeling and analytical/numerical analysis of wear processes in a mechanical friction clutch. International Journal of Bifurcation and Chaos Vol. 21 (2011), p.2861–2869.

DOI: 10.1142/s0218127411030192

Google Scholar

[42] N. Strömberg: An Eulerian approach for simulating frictional heating in disc-pad systems, European Journal of Mechanics A/Solids Vol. 30 (2011), pp.673-683.

DOI: 10.1016/j.euromechsol.2011.04.004

Google Scholar