[1]
P. Wriggers P: Computational contact mechanics (J. Wiley and Sons, New York, 2002).
Google Scholar
[2]
T.A. Laursen: Computational contact and impact mechanics, (Springer-Verlag, Berlin, 2002).
Google Scholar
[3]
A. Konyukhov and K. Schweizerhof: Computational Contact Mechanics, (Springer-Verlag, Heidelberg, 2013).
Google Scholar
[4]
J. Haslinger and P. Neittaanmaki: Finite element approximation for optimal shape design, (John Wiley & Sons Ltd., London, 1988).
Google Scholar
[5]
D. Hilding, A. Klarbring and J. Petterson: Optimization of structures in unilateral contact, Appl. Mech. Rev. Vol. 52 (1999), pp.139-160.
DOI: 10.1115/1.3098931
Google Scholar
[6]
I. Páczelt: Iterative methods for solution of contact optimization problems, Arch. Mech. Vol. 52 (2000), pp.685-711.
Google Scholar
[7]
G.K. Sfantos and M.H. Aliabadi: Application of BEM and optimization technique to wear problems, Int. J. Solids Struct. Vol. 43 (2006), pp.3626-3642.
DOI: 10.1016/j.ijsolstr.2005.09.004
Google Scholar
[8]
I.G. Goryacheva: Contact Mechanics in Tribology, (Kluwer Academic Publishers, Dordrecht, Boston, London, 2010).
Google Scholar
[9]
N.V. Banichuk and S. Yu. Ivanova: Shape optimization in contact problems of the theory of elasticity with incomplete external loading data, Journal of Applied Mathematics and Mechanics Vol. 73 (2009), p.696–704.
DOI: 10.1016/j.jappmathmech.2010.01.010
Google Scholar
[10]
N. Strömberg: Finite element treatment of two-dimensional thermoelastic wear problems, Comp. Meth. Appl. Mech. Eng. Vol. 177 (1988), pp.441-455.
Google Scholar
[11]
P. Podra, and Andersson S (1999) Simulating sliding wear with finite element method, Tribology International 32: 71-81.
DOI: 10.1016/s0301-679x(99)00012-2
Google Scholar
[12]
P. Ireman, A. Klarbring and N. Strömberg: (2002) Finite element algorithms for thermoelastic wear problems, European Journal of Mechanics A/Solids Vol. 21 (2002), p.423–440.
DOI: 10.1016/s0997-7538(02)01208-1
Google Scholar
[13]
S. Mukras, N.H. Kim, W.G. Sawyer, D.B. Jackson and L.W. Bergquist: (2009) Numerical integration schemes and parallel computation for wear prediction using finite element method, Wear Vol. 266 (2009), p.822–831.
DOI: 10.1016/j.wear.2008.12.016
Google Scholar
[14]
A. Söderberg and S. Andersson: Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software, Wear Vol. 267 (2009), p.2243–225.
DOI: 10.1016/j.wear.2009.09.004
Google Scholar
[15]
J. Lengiewicz and S. Stupkiewicz: Efficient model of evolution of wear in quasi-steady-state sliding contacts, Wear Vol. 303 (2013), p.611–621.
DOI: 10.1016/j.wear.2013.03.051
Google Scholar
[16]
G.K. Sfantos and M.H. Aliabadi: Application of BEM and optimization technique to wear problems, Int. J. Solids Struct. Vol. 43 (2006), pp.3626-3642.
DOI: 10.1016/j.ijsolstr.2005.09.004
Google Scholar
[17]
G.K. Sfantos and M.H. Aliabadi: A boundary element formulation for three-dimensional sliding wear simulation, Wear Vol. 262 (2007), p.672–683.
DOI: 10.1016/j.wear.2006.08.008
Google Scholar
[18]
L. Rodriguez-Tembleque, R. Abascal and M.H. Aliabadi: Anisotropic wear framework for 3D contact and rolling problems, Comput. Methods Appl. Mech. Engrg. Vol. 241–244 (2012), p.1–19.
DOI: 10.1016/j.cma.2012.05.025
Google Scholar
[19]
L. Rodriguez-Tembleque, M.H. Aliabadi and R. Abascal: Anisotrop contact and wear simulation using boundary elements, Key Engineering Materials Vol. 618 (2014), pp.73-98.
DOI: 10.4028/www.scientific.net/kem.618.73
Google Scholar
[20]
U. Peigney: Simulating wear under cyclic loading by a minimization approach, Int. J. Solids Struct. Vol. 41 (2004), pp.6783-6799.
DOI: 10.1016/j.ijsolstr.2004.05.022
Google Scholar
[21]
N.H. Kim, D. Won, D. Burris, B. Holtkamp, G.C. Gessel, P. Swanson and W. G. Sawyer: Finite element analysis and experiments of metal/metal wear in oscillatory contacts, Wear Vol. 258 (2005), pp.1787-1793.
DOI: 10.1016/j.wear.2004.12.014
Google Scholar
[22]
I.R. McColl, J. Ding and S.B. Leen: Finite element simulation and experimental validation of fretting wear, Wear Vol. 256 (2004), p.1114–1127.
DOI: 10.1016/j.wear.2003.07.001
Google Scholar
[23]
I.G. Goryacheva, P.T. Rajeev and T.N. Farris: Wear in partial slip contact, J. Tribology Vol. 123 (2001), pp.848-856.
DOI: 10.1115/1.1338476
Google Scholar
[24]
S. Fouvry, P. Kapsa and L. Vincent: Analysis of sliding behaviour for fretting loadings: determination of transition criteria, Wear Vol. 185 (1995), p.35–46.
DOI: 10.1016/0043-1648(94)06582-9
Google Scholar
[25]
J. Ding, S.B. Leen and I.R. McColl: The effect of slip regime on fretting wear-induced stress evolution, Int. J. Fatigue Vol. 26 (2004), p.521–531.
DOI: 10.1016/j.ijfatigue.2003.09.001
Google Scholar
[26]
K. Elleuch and S. Fouvry: Experimental and modeling aspects of abrasive wear of a A357 aluminium alloy under gross slip fretting conditions, Wear Vol. 258 (2005), p.40–49.
DOI: 10.1016/j.wear.2004.04.010
Google Scholar
[27]
S. Fouvry, C. Paulin and T. Liskiewicz: Application of an energy wear approach to quantify fretting contact durability: introduction of a wear energy capacity concept, Tribol. Int. Vol. 40 (2007), p.1428–1440.
DOI: 10.1016/j.triboint.2007.02.011
Google Scholar
[28]
D. Dini, A. Sackfield and D.A. Hills: An axi-symmetric Hertzian contact subject to cyclic loading, Wear Vol. 265 (2008), p.1918-(1922).
DOI: 10.1016/j.wear.2008.04.031
Google Scholar
[29]
S. Heredia and S. Fouvry: Introduction of a new sliding regime criterion to quantify partial, mixed and gross slip fretting regimes: Correlation with wear and cracking processes, Wear Vol. 269 (2010), pp.515-524.
DOI: 10.1016/j.wear.2010.05.002
Google Scholar
[30]
Z. Mróz and I. Páczelt: Analysis of thermo-elastic wear problems, J. Thermal Stresses Vol. 34-35 (2011), pp.569-606.
DOI: 10.1080/01495739.2011.564026
Google Scholar
[31]
I. Páczelt and Z. Mróz: On optimal contact shapes generated by wear, Int. J. Num. Meth. Eng. Vol. 63 (2005), pp.1310-1347.
DOI: 10.1002/nme.1321
Google Scholar
[32]
I. Páczelt and Z. Mróz: On the analysis of steady sliding wear process, Tribol. Int. Vol. 42 (2009), pp.275-283.
DOI: 10.1016/j.triboint.2008.06.007
Google Scholar
[33]
I. Páczelt and Z. Mróz: Variational approach to the analysis of steady state thermo-elastic wear regimes, Int. J. Num. Meth. Eng. Vol. 81 (2010), pp.728-760.
DOI: 10.1002/nme.2709
Google Scholar
[34]
I. Páczelt and Z. Mróz: Numerical analysis of steady thermo-elastic wear regimes induced by translating and rotating punches, Computes and Structures Vol. 89 (2011), pp.2495-2521.
DOI: 10.1016/j.compstruc.2011.06.001
Google Scholar
[35]
I. Páczelt and Z. Mróz: Solution of wear problems for monotonic and periodic sliding with p-version of the finite element method, Comput. Methods Appl. Mech. Eng. Vol. 249-252 (2012), pp.75-103.
DOI: 10.1016/j.cma.2012.02.012
Google Scholar
[36]
I. Páczelt, S. Kucharski and Z. Mróz: The experimental and numerical analysis of quasi-steady wear processes for a sliding spherical indenter, Wear Vol. 274-275 (2012), pp.127-148.
DOI: 10.1016/j.wear.2011.08.026
Google Scholar
[37]
I. Páczelt and Z. Mróz: Analysis of thermo-mechanical wear problems for reciprocal punch sliding, Adv. Eng. Software Vol. 80 (2015), pp.139-155.
DOI: 10.1016/j.advengsoft.2014.09.012
Google Scholar
[38]
G. Zavarise, P. Wriggers and P.B. Schrefler: On augmented Lagrangian algorithms for thermomechanical contact problems with friction, Int. J. Num. Meth. Eng. Vol. 38 (1995), pp.2929-2949.
DOI: 10.1002/nme.1620381706
Google Scholar
[39]
B. Szabó and I. Babuska: Finite element analysis, (Wiley-Intersience, New York, 1991).
Google Scholar
[40]
I. Páczelt, B. Szabó and T. Szabó: Solution of contact problem using the hp-version of the finite element method, Comput. Math. Appl. Vol. 38 (2000), p.49–69.
DOI: 10.1016/s0898-1221(99)00261-8
Google Scholar
[41]
J. Awrejcewicz and D. Grzelczyk: Modeling and analytical/numerical analysis of wear processes in a mechanical friction clutch. International Journal of Bifurcation and Chaos Vol. 21 (2011), p.2861–2869.
DOI: 10.1142/s0218127411030192
Google Scholar
[42]
N. Strömberg: An Eulerian approach for simulating frictional heating in disc-pad systems, European Journal of Mechanics A/Solids Vol. 30 (2011), pp.673-683.
DOI: 10.1016/j.euromechsol.2011.04.004
Google Scholar