Elastic-Plastic Contact between Hard Metal Particles

Article Preview

Abstract:

In the present study contact between elastic-plastic dissimilar spherical particles are investigated. The investigation is based on analytical and numerical methods and in the latter case in particular the finite element method. The results presented are pertinent to force-displacement relations at contact when elastic and plastic deformations are of equal magnitude. Especially, hard metal particles are considered with a typical application area being analysis of powder compaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-99

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hertz H.: Uber die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1882).

DOI: 10.1515/9783112342404-004

Google Scholar

[2] Tabor, D.: Hardness of metals. Oxford University Press, Oxford (1951).

Google Scholar

[3] Johnson, K.L.: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115-126 (1970).

Google Scholar

[4] Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985).

Google Scholar

[5] Storåkers, B., Biwa, S., Larsson, P.L.: Similarity analysis of inelastic contact. Int. J. Solids Struct. 34, 3061–3083 (1997).

DOI: 10.1016/s0020-7683(96)00176-x

Google Scholar

[6] Mesarovic, S.D., Fleck, N.A.: Spherical indentation of elastic–plastic solids. Proc. R. Soc. Lond. A455, 2707–2728 (1999).

DOI: 10.1098/rspa.1999.0423

Google Scholar

[7] Mesarovic, S.D., Fleck, N.A.: Frictionless indentation of dissimilar elastic–plastic spheres. Int. J. Solids Struct. 37, 7071–7091 (2000).

DOI: 10.1016/s0020-7683(99)00328-5

Google Scholar

[8] Skrinjar, O., Larsson, P.L., Storåkers, B.: Local Contact Compliance Relations at Compaction of Composite Powders. J. Appl. Mech. 74, 164-168 (2007).

DOI: 10.1115/1.2165240

Google Scholar

[9] Chaudhri, M.M.: A note on a common mistake in the analysis of nanoindentation data. J. Mater. Res. 16, 336-339 (2001).

DOI: 10.1557/jmr.2001.0052

Google Scholar

[10] Larsson, P.L.: Investigation of sharp contact at rigid plastic conditions. Int. J. Mech. Sci. 43, 895–920 (2001).

Google Scholar

[11] Larsson, P.L.: On the mechanical behavior of global parameters in material characterization by sharp indentation testing. J. Test. Eval. 32, 310-321 (2004).

DOI: 10.1520/jte11851

Google Scholar

[12] Giannakopoulos, A.E., Larsson, P.L., Vestergaard, R.: Analysis of Vickers indentation. Int. J. Solids Struct. 31, 2679–2708 (1994).

DOI: 10.1016/0020-7683(94)90225-9

Google Scholar

[13] Larsson, P.L., Söderlund, E., Giannakopoulos, A.E., Rowcliffe, D.J., Vestergaard. R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221–248 (1996).

DOI: 10.1016/0020-7683(95)00033-7

Google Scholar

[14] Biwa, S., Storåkers, B.: Analysis of fully plastic Brinell indentation. J. Mech. Phys. Solids 43, 1303–1334 (1995).

Google Scholar

[15] Ogbonna, N., Fleck, N.A., Cocks, A.C.F.: Transient creep analysis of ball indentation. Int. J. Mech. Sci. 37, 1179–1202 (1995).

DOI: 10.1016/0020-7403(95)00016-q

Google Scholar

[16] Bartier, O., Hernot, X.: Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material. Int. J. Solids Struct. 49, 2015–2026 (2012).

DOI: 10.1016/j.ijsolstr.2012.04.005

Google Scholar

[17] Olsson, E., Larsson, P.L.: On the appropriate use of representative stress quantities at correlation of spherical contact problems. Trib. Letters 50, 221-232 (2013).

DOI: 10.1007/s11249-013-0114-1

Google Scholar

[18] Olsson, E., Larsson, P.L.: On Force-Displacement Relations at Contact between Elastic-Plastic Adhesive Bodies. J. Mech. Phys. Solids 61, 1185-1201 (2013).

DOI: 10.1016/j.jmps.2013.01.004

Google Scholar

[19] Storåkers, B.: Local contact behavior of visco-plastic particles. In: Proceedings of IUTAM Symposium Mechanics of Granular Flow and Particle Compaction. Kluwer Academic Publishers, Amsterdam, pp . 173–184 (1997).

DOI: 10.1007/978-94-011-5520-5_16

Google Scholar

[20] Storåkers, B., Larsson, P.L.: On Brinell and Boussinesq indentation of creeping solids. J. Mech. Phys. Solids 42, 307–332 (1994).

DOI: 10.1016/0022-5096(94)90012-4

Google Scholar

[21] Fleck, N.A., Storåkers, B., McMeeking, R.M.: The viscoplastic compaction of powders. In: Proceedings of IUTAM Symposium Mechanics of Granular Flow and Particle Compaction. Academic Publishers, Amsterdam, p.1–10 (1997).

DOI: 10.1007/978-94-011-5520-5_1

Google Scholar

[22] Carlsson, S., Larsson, P.L.: On the determination of residual stress and strain fields by sharp indentation testing. Part I. Theoretical and numerical analysis. Acta Mater. 49, 2179–2191 (2001).

DOI: 10.1016/s1359-6454(01)00122-7

Google Scholar

[23] Fleck, N.A.: On the cold compaction of powders. J. Mech. Phys. Solids 43, 1409–1431 (1995).

Google Scholar

[24] Larsson, P.L., Biwa, S., Storåkers, B.: Analysis of cold and hot isostatic compaction. Acta Mater. 44, 3655–3666 (1996).

DOI: 10.1016/1359-6454(96)00003-1

Google Scholar

[25] Storåkers, B., Fleck, N.A., McMeeking, R. M.: The visco-plastic compaction of composite powders. J. Mech. Phys. Solids 47, 785–815 (1999).

DOI: 10.1016/s0022-5096(98)00076-3

Google Scholar

[26] Heyliger, P.R., McMeeking, R.M.: Cold plastic compaction of powders by a network model. J. Mech. Phys. Solids 49, 2031–2054 (2001).

DOI: 10.1016/s0022-5096(01)00038-2

Google Scholar

[27] Martin, C.L., Bouvard, D.: Study of the cold compaction of composite powders by the discrete element method. Acta Mater. 51, 373–386 (2003).

DOI: 10.1016/s1359-6454(02)00402-0

Google Scholar

[28] Martin, C.L., Bouvard, D., Shima, S.: Study of particle rearrangement during powder compaction by the discrete element method. J. Mech. Phys. Solids 51, 667–693 (2003).

DOI: 10.1016/s0022-5096(02)00101-1

Google Scholar

[29] Skrinjar, O., Larsson, P. -L.: On discrete element modelling of compaction of powders with size ratio. Comput. Mater. Sci. 31, 131–146 (2004).

DOI: 10.1016/j.commatsci.2004.02.005

Google Scholar

[30] Skrinjar, O., Larsson, P. -L.: Cold compaction of composite powders with size ratio. Acta Mater. 57, 1871–1884 (2004).

DOI: 10.1016/j.actamat.2003.12.026

Google Scholar

[31] Martin, C.L., Bouvard, D.: Isostatic compaction of bimodal powder mixtures and composites. Int J Mech Sci 46, 907-927 (2004).

DOI: 10.1016/j.ijmecsci.2004.05.012

Google Scholar

[32] Martin, C.L.: Elasticity, fracture and yielding of cold compacted metal powders. J. Mech. Phys. Solids 52, 1691–1717 (2004).

DOI: 10.1016/j.jmps.2004.03.004

Google Scholar

[33] Pizette, P., Martin, C.L., Delette, G., Sornay, P., Sans, F.: Compaction of aggregated ceramic powders: from contact law to fracture and yield surfaces, Powder Technol. 198, 240–250 (2010).

DOI: 10.1016/j.powtec.2009.11.013

Google Scholar

[34] Olsson E., Larsson P.L.: On the effect of particle size distribution in cold powder compaction, J. Appl. Mechanics, 79(5) art. No. 051017 (2012).

DOI: 10.1115/1.4006382

Google Scholar

[35] Olsson E., Larsson P.L.: A numerical analysis of cold powder compaction based on micromechanical experiments, Powder Technol. 243, 71-78 (2013).

DOI: 10.1016/j.powtec.2013.03.040

Google Scholar

[36] Larsson P.L., Olsson E.: A numerical study of the mechanical behavior at contact between particles of dissimilar elastic–ideally plastic materials, J. Phys. Chem. Solids 77, 92-100 (2015).

DOI: 10.1016/j.jpcs.2014.08.016

Google Scholar

[37] ABAQUS: Abaqus 6. 11. Dassault Systemes Simula Corp., Providence, RI (2011).

Google Scholar

[38] Carlsson, S., Biwa, S., Larsson, P.L.: On frictional effects at inelastic contact between spherical bodies. Int. J. Mech. Sci. 42, 107-128 (2000).

DOI: 10.1016/s0020-7403(98)00110-6

Google Scholar

[39] Olsson E., Larsson P.L.: On the tangential contact behavior at elastic–plastic spherical contact problems, Wear 319, 110-117 (2014).

DOI: 10.1016/j.wear.2014.07.016

Google Scholar

[40] Mesarovic S.D., Johnson K.L.: Adhesive contact of elastic-plastic spheres. J. Mech. Phys. Solids 48, 2009-2033 (2000).

DOI: 10.1016/s0022-5096(00)00004-1

Google Scholar

[41] Bucaille, J.L., Felder, E., Hochstetter, G.: Mechanical analysis of the scratch test on elastic and perfectly plastic materials with three-dimensional finite element modeling. Wear 249, 422-432 (2001).

DOI: 10.1016/s0043-1648(01)00538-5

Google Scholar

[42] Holmberg, K., Laukkanen, A., Ronkainen, H., Wallin, K., Varjus, S.: A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear 254, 278-291 (2003).

DOI: 10.1016/s0043-1648(02)00297-1

Google Scholar

[43] Larsson, P.L.: Modelling of sharp indentation experiments: some fundamental issues. Phil. Mag. 86, 5155-5177 (2006).

DOI: 10.1080/14786430600589089

Google Scholar

[44] Wredenberg, F., Larsson, P.L.: On the numerics and correlation of scratch testing. J. Mech. Mater. Struct. 2, 573–594 (2007).

Google Scholar

[45] Bellemare, S.C., Dao, M., Suresh, S.: Effects of mechanical properties and surface friction on elasto-plastic sliding contact. Mech. Mater. 40, 206-219 (2008).

DOI: 10.1016/j.mechmat.2007.07.006

Google Scholar

[46] Wredenberg, F., Larsson, P.L.: Scratch testing of metals and polymers: experiments and numerics. Wear 266, 76–83 (2009).

DOI: 10.1016/j.wear.2008.05.014

Google Scholar